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Chapter 1

Introduction

Coca cultivation in Colombia has been a major problem for the last 30 years.
In the 80’s and 90’s a migration of coca crops coming from Perú and Bo-
livia began, as a response to the anti-drug policies [RG11], a phenomenon
denominated efecto globo o balón. At the beginning of 90’s coca cultivation
was almost completely concentrated in 4 departments, Guaviare, Caquetá,
Putumayo and Boĺıvar. Comparing this date with data of 2009 it is clear
that coca has spread through the Colombian territory [RG11]. Thus, the
question is, can we modeled somehow this spreading phenomenon? Is it just
a diffusion process? Looking for an answer and based on the rigourous work
of Ricardo Rocha Garćıa and the Colombia Coca Cultivation Survey made
by the UNODC, we have found that there exist a form of contagion due to
the social, economic and even cultural issues that make some territories more
vulnerable [RG11].

In the following work, we present a new way to analyse coca cultivation
in Colombia, by means of a SIR-type model and mathematical epidemiology
theory. The first part is a review of the fundamental concepts of ordinary
differential equations, dynamical systems and epidemic models that are the
theoretical foundations of what follows. In the second part, we present the
model in the form of a system of time dependent ordinary differential equa-
tions and we develop the classical analysis of equilibria and stability. Based
on official data from [UNO] we derive the constants of the model. Then
we construct a Lyapunov function for each equilibrium and obtain global
properties.

2



Chapter 2

Preliminaries

We present some of the basic tools about systems of ordinary differential
equations and epidemiological models (more specifically, the SIR model) that
we are going to need throughout this work. We shall mention some results
we need without formal statement or proof. A complete development of such
a theory can be found in [Per01] or any classic book in differential equations
or non-linear analysis.

2.1 Systems of ordinary differential equations

We begin with a system of ordinary differential equations. Since we are only
concerned with the autonomous case, we can write it in the form

ẋ = f(x) (2.1)

where, ẋ(t) := (dx1
dt
, . . . , dxn

dt
), f : E → Rn a vector field in C1(E) and E ⊂ Rn

an open set. A curve φ defined on an interval I is called a solution of the
system (2.1) if φ is differentiable on I, φ(t) ∈ E for all t ∈ I and

φ̇(t) = f(φ(t))

for all t ∈ I. If, in addition, for some x0 ∈ E there exists t0 ∈ I such that

φ(t0) = x0

then φ(·, x0) is called solution of the initial value problem

ẋ = f(x) (2.2)

x(0) = x0.
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By the theory of ordinary differential equations and specifically the well-
known Existence and Uniqueness Theorem, we know that for each x0 ∈ E,
there exists an a > 0 and a unique solution φ(·, x0)1 of (2.2) defined on
(−a, a). As a corollary this solution can be extended to a maximal interval
of existence I(x0). The set of mappings defined by φt(x0) = φ(t, x0) is called
flow of the system (2.1) or flow of the vector field f . However, there is a
stronger theorem which allows us to think that solutions are always defined
for all t ∈ R, but for that, we need to introduce an additional concept.

Definition 1. Let E1, E2 be open subsets of Rn, f and g vector fields in
C1(E1) and C1(E2) respectively. Then, the systems of differential equations

ẋ = f(x)

and
ẋ = g(x)

with flows φ and ψ are said to be topologically equivalent if there exists a
homeomorphism H : E1 → E2 and for each x ∈ E1 a continuously differen-
tiable function t(x, τ) defined for all τ ∈ R such that ∂t/∂τ > 0 and

H ◦ φt(x,τ) = ψτ ◦H(x)

for all x ∈ E1 and τ ∈ R.

Roughly speaking, two systems are topologically equivalent if there is an
time orientation preserving homeomorphism from E1 to E2 sending trajec-
tories from the first into trajectories of the second. Now we can state the
so-called global existence theorem.

Theorem 1 ( [Per01], Theorem 3.1.2). Let f be a vector field in C1(Rn).
Then, for all x0 ∈ Rn the initial value problem

ẋ =
f

1 + |f |
(x)

x(0) = x0,

1We make explicit the dependence on x0 which is guaranteed by uniqueness.
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has a unique solution φ(·, x0) defined for all t ∈ R, and it is topologically
equivalent to the system

ẋ = f(x)

x(0) = x0.

Although the proof of this result is not trivial it relies on a main idea
which is to rescale time. A similar rescaling argument due to Vinograd can
be applied to show that the theorem still holds for systems defined on proper
subsets of Rn. See [Per01].

Theorem 2. Let E be an open subset of Rn and f ∈ C1(E). Then there
exists a vector field F ∈ C1(E) such that the systems

ẋ = f(x)

and
ẋ = F (x)

are topologically equivalent and the trajectories of F are defined for all t ∈ R.

So without restriction, we may assume that for each x0 ∈ E there exists
a solution φt(x0) = φ(t, x0) defined for all t. It can be shown that the map

φ : R× E → E

(t, x) 7→ φt(x)

satisfies a one-parameter group condition, namely

1. φ0(x) = x, for all x ∈ E.

2. φt+s(x) = (φt ◦ φs)(x), for all t, s ∈ R and x ∈ E.

Definition 2. A family of maps {φt(·)}t∈R satisfying the two conditions
above is called a dynamical system on E.

Remark 1. Note that according to this definition, the first family {φ(t, ·)}t∈R
we gave, was just an example of a dynamical system, but since these are the
most important ones, we decided to motivate the definition in this way. More-
over, we shall call dynamical system to either the system of equations or the
family of solution curves without distinction.
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2.1.1 Equilibrium points and stability

Let φt(x) be the flow of the system (2.1) and assume it belongs to C2(E×R).
This means that

d

dt
φt(x) = f(φt(x)).

Differentiating both sides with respect to x, recalling that Dx commutes with
d/dt and applying the chain rule we obtain

d

dt
Dxφt(x) = Dx[f(φt(x))] = Dxf(φt(x)) ·Dφt(x).

If we now fix some x0 ∈ E and call A(t) = Dxf(φt(x0)) and X(t) = Dxφt(x0),
what we just write is

Ẋ(t) = A(t)X(t), (2.3)

wich is known as the variational equation. A matrix Φ satisfying the equation
(2.3) is called fundamental solution and its columns are n linearly indepen-
dent solutions of

ẋ = A(t)x.

Given a particular solution passing through x0, the variational equation mea-
sures the behaviour of solutions near the particular one, whether they move
away or remain close.

If x0 ∈ E is such that f(x0) = 0, x0 is called equilibrium and the function
ut(x) = x0 is an equilibrium solution. Computing the matrix A(t) of the
variational equation we get the linearization at x0 or linearized system at x0
which is given by the linear system

ẋ = Df(x0)(x− x0), (2.4)

We shall see that under certain conditions on the spectrum of the matrix
Df(x0) the original system and the linearized one are locally topologically
equivalent, i.e., their qualitative behavior near the equilibrium is essentially
the same.

Definition 3. Under the notations above, an equilibrium point x0 is called
hyperbolic if all eigenvalues of Df(x0) have non zero real part. If there are
at least one eigenvalue with zero real part, x0 is called non-hyperbolic.
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Intuitively, an equilibrium point is stable if solution curves passing near
the equilibrium, remain near the equilibrium when time goes by, and it is
asymptotically stable if these curves, in fact, converge to the equilibrium.
Formally,

Definition 4. Let E ⊂ Rn be an open set, f ∈ C1(E) and φ the flow of f .
If x0 is an equilibrium for the system ẋ = f(x) then,

• x0 is stable if for all ε > 0 there exists a δ > 0 such that for all t ≥ 0
and all x ∈ B(x0, δ), φ(t, x) ∈ B(x0, ε).

• x0 is asymptotically stable if there exists δ > 0 such that for all x ∈
B(x0, δ), lim

t→∞
φ(x, t) = x0

• x0 is called unstable if it is not stable.

Although we just gave a formal definition of stability, when dealing with
linear systems, i.e., systems generated by a linear map, stability can be de-
cided in terms of the sign of the real part of the eigenvalues of such a map.
When the real part of all eigenvalues is non-positive, the equilibrium is sta-
ble; if there is at least one eigenvalue with positive real part, the equilibrium
is unstable. Let us look at some simple examples in order to illustrate this.

Example 1. Consider the following linear systems.

1. [
ẋ
ẏ

]
=

[
−1 2
0 −2

] [
x
y

]
.

Note that the eigenvalues of the matrix are −1 and −2 so the equilib-
rium is (asymptotically) stable as Figure (2.1) shows.

2. [
ẋ
ẏ

]
=

[
−1 2
0 2

] [
x
y

]
.

The eigenvalues here are −1 and 2 so the equilibrium is unstable. See
Figure (2.2).

3. [
ẋ
ẏ

]
=

[
0 −2
2 0

] [
x
y

]
.

7



Figure 2.1:

Figure 2.2:

The eigenvalues here are ±2i so the equilibrium is stable, but note that
in this case, even when the trajectories remain near the equilibrium,
they do not converge to the equilibrium. See Figure (2.3).

There are two classical ways to study the stability of a dynamical system.
One is to linearize at equilibrium points and make use of Hartman-Grobman
theorem unless they are non-hyperbolic. The other possibility, which is in
fact more general, is to find Lyapunov functions for the system. We present
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Figure 2.3:

both approaches here.

Theorem 3 (Hartman-Grobman). Consider a dynamical system given
by (2.1), φ the flow of the system, 0 ∈ E an hyperbolic equilibrium point
and let A := Df(0). Then, the systems ẋ = f(x) and ẋ = Ax are locally
topologically equivalent, i.e, there exists an open set U containing 0 and a
homeomorphism H of U into an open set V containing the origin such that
for every x0 ∈ E there exists an open interval I0 ⊂ R containing 0 such that
for all x ∈ U and t ∈ I0

H ◦ φt(x) = etAH(x)

This theorem is classic and the proof could be find in [Per01], for example.
The importance of this result is that it ensures that the linearization at
hyperbolic equilibrium points describes completely the qualitative structure
of the system, at least in a neighbourhood of the equilibrium. Let us look at
some examples to understand how the theorem works and when it fails.

Example 2. Consider the two dimensional system

ẋ = 4x+ 2xy − 8

ẏ = 4y2 − x2.

It has two equilibrium points, namely, (±2
√

3 − 2,±
√

3 − 1). A graph
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Figure 2.4:

for the vector field that generates the system is shown in Figure 2.4. Now, if
we linearize at the equilibrium in the first quadrant, we get, after a change
of variables in order to have the equilibrium at zero,[

ẋ
ẏ

]
=

[
2 + 2

√
3 4

√
3− 4

−4
√

3 + 4 8
√

3− 8

] [
x
y

]
.

Figure 2.5:

A phase portrait of this system is shown in Figure 2.5 As the figures show,
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the qualitative structure of the non-linear system near the equilibrium is the
same as the qualitative structure of the linearized system.

Example 3 (Non-example). Consider the three dimensional system

ẋ = −y − xy2 + z2 − x3

ẏ = x+ z3 − y3

ż = −xz − x2z − z2y − z5.

It is clear that the origin is an equilibrium point for the system. Linearizing
at the origin we get the systemẋẏ

ż

 =

0 −1 0
1 0 0
0 0 0

xy
z

 .
So the eigenvalues are ±i and 0 and thus, the origin is a non-hyperbolic equi-
librium point. Note that taking the exponential of the linearization matrix
we obtain cos(t) − sin(t) 0

sin(t) cos(t) 0
0 0 1

 ,
so the solution curves lie on circles parallel to the plane z = 0, and then
the origin is a stable equilibrium. However, we shall see soon that for the
non-linear system, the origin is in fact an asymptotically stable equilibrium
point.

We now proceed to show another tool to study the stability of a system.
Suppose x0 is an equilibrium point of the (2.1). In order to study its stability
we may take any other point x close to x0 and a hyperplane containing x but
not x0. Then look at the angle between the vectors f(x) and the normal to
such a hyperplane. Depending on this angle we can know if a solution curve
passing through x is moving away from x0 or not. Since we should do this
for every x in a neighbourhood of x0, it turns out that there is a natural way
to obtain such a hyperplane for each x, by considering the tangent spaces of
level sets of some function. See Figure 2.6. Surprisingly, if we take some real
valued function on a neighbourhood of x0 and compose it with the flow of
the system, we obtain another real valued function, whose derivative w.r.t.
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Figure 2.6: The idea behind the Lyapunov’s direct method

the time, avaluated in t = 0 is exactly what we are describing. Of course
this is just an idea to illustrate the idea behind the following definition and
theorem.

Definition 5. Consider the system (2.1), and assume that x0 ∈ E is an
equilibrium point. A function V : E → R satisfying

• V (x0) = 0,

• V (x) > 0 for all x in some neighbourhood of x0

is called Lyapunov function for (2.1) at x0. If such a neighbourhood is the
whole E, V is called global Lyapunov funtion. Also, we define the orbital
derivative of V or derivative of V along solution curves of 2.1 as

V̇ (x) :=
d

dt

∣∣∣
t=0

(V (φ(x, t))) = DV (x)f(x) = ∇V (x)tf(x),
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where the last equality holds because of the chain rule.

Although it seems to be a naive definition, it is the only thing we need
to check stability of an equilibrium point. This is stated as follows,

Theorem 4 (Lyapunov’s Direct Method). If V is a Lyapunov function
for 2.1 at x0 then,

1. if V̇ (x) ≤ 0 for all x ∈ E, then x0 is stable.

2. If V̇ (x) < 0 for all x ∈ E, x 6= x0, then x0 is asymptotically stable.

3. If V̇ (x) ≥ 0 for all x ∈ E, then x0 is unstable.

Proof. For the first two parts, we follow the proof of [Per01]. Take ε > 0 such
that Bε(x0) ⊂ E. Since the boundary of this set is compact, V attains a min-
imum m > 0 by the continuity of V . Now take U = {x ∈ Bε(x0)|V (x) < m}.
If V̇ (x) ≤ 0, then V is decreasing along solution curves. Therefore, for any
x ∈ U the corresponding solution curve passing through x can not leave U
and this means that x0 is stable.

Now, assume that V̇ < 0 and take a trajectory φ(t, x) ∈ U \ {x0}.
Since Bε(x0) is compact, there exists a sequence of times tn →∞ such that
φ(tn, x)→ x̄. We must show that x̄ = x0. If x̄ 6= x0, there exists a δ > 0 such
that x̄ /∈ Bδ(x0). As before, there exists an open set Ũ ⊂ Bδ(x0) such that
trajectories starting on U can not leave U . Therefore, the sequence φ(tn, x)
is eventually outside Bδ(x0). Moreover, we can assume that φ(tn, x) do not
enter Bδ(x0). Then there is an α > 0 such that V̇ ≤ −α for all x ∈ U \ Ũ .
Since φ(tn, x) does not enter Ũ we can apply this estimate to such (tn, x) so
that

V (φ(tn, x))− V (x) =

∫ tn

0

V̇ (φ(s, x))dt

≤ −αtn.

Hence, for sufficiently large n, V (φ(tn, x)) ≤ V (x) − αtn ≤ 0, which contra-
dicts the definition of V .
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Finally we consider the case V̇ > 0. Here we follow the proof of [Kha92]2

Let M be the maximum of V on Bε(x0). Take any δ > 0, x ∈ Bδ(x0) \ {x0}
and a := V (x). Since V̇ > 0, V is strictly increasing on trajectories and
so V (φ(t, x)) ≥ a for all t ≥ 0. By the positive definiteness of V̇ and the
compatness of {x ∈ Bε(x0), V (x) ≥ a},

m := inf{V̇ (x)|x ∈ Bε(x0), V (x) ≥ a} > 0.

Then, V (φ(t, x) − V (x)) ≥ mt for all t ≥ 0, so for a sufficiently large t,
V (φ(t, x)) > M , this is, φ(t, x) leaves Bε(x0) and hence x0 is .

Example 4. Consider the system of Example (3). Let V (x, y, z) = 1
2
(x2 +

y2 + z2). This is clearly a Lyapunov function for the system at the origin.
Computing the orbital derivative of V we get,

V̇ (x, y, z) = −xy − x2y2 + xz2 − x4 + xy + yz3 − y4 − xz2 − x2z2 − yz3 − z6

= −x4 − 2x2y2 − y4 − z6 < 0

for every (x, y, z) 6= (0, 0, 0). Then, the origin is an asymptotically stable
equilibrium point.

2.1.2 Some considerations about two dimensional sys-
tems

There exists some strong results concerning two dimensional systems wich are
useful in order to study the asymptotic behaviour of solutions, the existence
of periodic orbits, clasification of α/ω-limit sets and so on. First of all, let
give some definitions. In what follows E is an open subset of Rn as before.

Definition 6. Let x ∈ E and φ(·, x) be a solution of the system (2.1). A
point p ∈ E is called ω-limit point of the solution if there exists a sequence
(tn)n ⊂ R such that

lim
n→∞

φ(tn, x) = p.

In case we have a point q with a similar property but with n → −∞, it is
called α-limit point. The set of α-limit (resp. ω-limit) points is called the
α-limit (resp ω-limit) set.

2This is just because the proof of [Kha92] illustrates in a clearer way the need of
compactness of Bε(x0)
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Remark 2. By ω(p) we mean the ω-limit set of the solution curve passing
through p wich by uniqueness, is equivalent to the ω-limit of p.

Definition 7. A subset M ⊂ E is called positively invatiant under the vector
field f if given a point x ∈M , φt(x) ∈M for all t ≥ 0.

The following theorems hold for n = 2 and their proof can be found in
[Wig03] or [Kha92].

Theorem 5 (Bendixson-Dulac Criterion). Let B ∈ C1(E,R) and as-
sume that E is simply connected. If ∇ · Bf is not identically zero and does
not change in sign, then (2.1) does not have closed periodic solution curves
lying in E.

Theorem 6 (Poincaré-Bedixson Theorem). If M is a positively invari-
ant set containing a finite number of equilibrium points of (2.1), the one of
the following is true,

• ω(p) is an equilibrium point.

• ω(p) is a closed periodic curve.

• ω(p) consists of a finite set of equilibrium points S, and finite number
of closed curves with their α/ω-limits in S.

2.2 Epidemic Models

2.2.1 Basic features of SIR model

The epidemic models we are going to deal with belong to the class of com-
partmental models. This approach is mainly due to A.G. McKendrick and
W.O. Kermack in the beginning of 1900’s [BCC12]. The idea behind these
kind of models is to divide the affected population in groups of similar fea-
tures or stages of illness, and model the dynamic between the groups by time
dependent ordinary differential equations.

The simplest epidemic model is the Kermack-McKendrick model which
divides the population in three compartments, the susceptible (S), the in-
fected (I) and the recovered (R). We explain here the basic properties and
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S I R
βIS pI

Figure 2.7: SIR diagram

important quantities associated to this model.

A schematic figure of the SIR model is shown in figure (2.7)
From this diagram we get the following system of equations,

dS

dt
= −βIS

dI

dt
= βIS − pI

dR

dt
= pI.

Here, β and p are positive constants representing the infection rate, and the
removal or recovery rate respectively. Note that from these we derive a first
obvious assumption of the model which is that it considers immunity to re-
infection. The other assumption which is clear from the equations is that
the total population remains constant. This is usually explained by the fact
that the time scale of the study of the disease is usually faster than the time
scale of births and deaths so population dynamics might be ignored [BCC12].
Now let us analyze this equations in some more detail.

Note that I is decreasing if S < p/β (and increasing if we have the other
inequality), but since Ṡ < 0, S is always decrasing from an initial amount
S0 = S(0). Thus, if S0 < p/β, the infective compartment disappear eventu-
ally, and in the other case, it increases to a maximum value when S approach
the value p/β or equivalently when βS0/p reaches the value 1. Therefore,
R0 := βS0/p is a threshold value for the system in the sense that if R0 < 1
the epidemic will disappear, while if R0 > 1 there will be an epidemic. The
case R0 = 1 is inconclusive and requires more considerations depending on
the problem. R0 is known as the basic reproduction number becasue it mea-
sures the number of secondary infections caused by a single infective.
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Now, since the population remains constant, we can reduce the system
to a two dimensional system by dropping the equation for R. For, in case I
or S depend on R we just replace every occurrence of it by N −S − I where
N is the total population. The resulting system is

dS

dt
= −βIS

dI

dt
= βIS − pI.

This consideration makes easier to identify the solution curves, but more
generally, it allows us to use Poincaré-Bendixson-Dulac theory in order to
study the asymptotic behavior of the solutions. As a way to know at least
where the solution curves lie, we divide the two equations above and we
obtain

İ

Ṡ
=
dI

dS
=
βSI − pI
−βSI

= −1 +
p

βS
.

So we get an ordinary separable equation with solution,

I(S) = −S +
p

β
ln(S) + c,

and then I + S − p
β

ln(S) is constant for solutions of the system. Then the
solution curves lie on contour lines of the function

V (S, I) = I + S − p

β
ln(S).

2.2.2 Qualitative Analysis

We first compute the isoclines of the system (the the resulting curves taking
one of the equations equal to 0) and we get that if dS/dt = 0 then the iso-
clines are the S and I axis. If dI/dt = 0 we get again the S axis and the line
S = p/β. Taking the intersection of these isoclines we get the line of disease
free equilibria I = 0.

Now we take f(S, I) = [−βIS βIS − pI]t. With B ≡ 1 we have that

∇ ·Bf = β(s− i)− p

17



which is larger than 0 iff I < S − p/β. Thus, in order to apply Bendixson-
Dulac Criterion we need that D = {(S, I)| S ≥ 0, I ≥ 0, S + I ≤ N} does
not intersect the line I = S−p/β, but this is equivalent to say that p/β > N
or βN/p < 1 and in this case R0 < 1. Altogether, if R0 < 1 Bendixson-Dulac
Criterion implies that there are no periodic solutions.
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Chapter 3

A SIR model for coca crops in
Colombia

Illicit crops in Colombia and more specifically coca crops have shown a ge-
ographical behaviour similar to the outbreak of an infectious disease in a
population. There are some territories with social, political and economical
features which are determinant in their vulnerability to the emergence of coca
crops. Moreover, there exists certain propagation phenomena which allows
us to think that there is a form of contagion. In [RG11] this phenomena
is denoted by efecto globo o balón, a term used in the 90’s to describe the
migration of coca crops form Perú and Bolivia, to Colombia. In the same
book, Rocha Garćıa shows some data concerning the space dynamics of coca
crops and deduce that there is a mixture of coalescence and fragmentation in
Colombia. He talks about coca clusters that rather than being static, have
the ability to move, even to quite distant places. During the 90’s, for exam-
ple, there were 4 big reported clusters in Guaviare, Caquetá, Putumayo and
Boĺıvar. Almost twenty years later in 2009, there were coca crops in 23 of the
32 departments of Colombia, with some similarities in the distribution of the
old ones, but with a big reduction in departments like Putumayo, Caquetá
and Meta followed by the rise of new clusters in the west side of the country.

These economic information has suggested us that there is a possibility
to model the problem of coca crops in Colombia as an epidemic, and use
all the machinery of ODE modelling in order to make predictions and find
quantitative evidence of what strategies could be more effective in reducing
the hectares of coca crops.
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Figure 3.1: Coca Cultivation Density in Colombia in 2011. Source: UNODC,
2011
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3.1 SIR model and some preliminary com-

ments

We present here a SIR-type model for coca crops in Colombia where the
population is composed by territorial divisions. Our model differs from the
classic SIR on the fact of reinfection. However, this occurs with a different
rate and that is why we do not use a SIS model. The SIRS is a model that
allows reinfection, but only by transfer of recoverder individuals into the
susceptible compartment. Based on the data of [UNO] we decided that this
model will not be so appropiate because here, a recovered territory shows even
more vulnerability to return into the infective compartment, see Figure(??).
We have also based on the work of [WC07] and [MS09] A diagram of the
dynamics is shown in Figure 3.3.

In equations,

dS

dt
= −β1

I

N
S

dI

dt
= β2

I

N
S + β2

I

N
R− pI

dR

dt
= pI − β2

I

N
R.

The constants and the assumptions of the model are the following:

• Here, S, I and R are not individuals but can be departments munici-
palities, or any division of the territory. In our case we will use division
by departments.

• β1 is the probability that a department become infected after contact
with a infectious one. Here contact means presence of new croppers
coming eventually from other departments they may have been forced
to leave as in the efecto globo mentioned in [RG11], or new croppers
from the same department searching for new opportunities influenced
by the evidence of better profitability of coca cultivation.

• β2 is the probability of emergence of coca crops in a department which
had become free of crops.
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Figure 3.2: Regional stability of coca cultivation in Colombia, 2001 - 2011.
Source: UNODC, 2011
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Figure 3.3: Model diagram

• p is the removal rate, in this case due to manual eradication, aerial
spraying or volunteer desertion.

• The population remains constant. This is quite obvious since no de-
partment will disappear.

• There exists homogeneous mixing. This comes from social and quanti-
tative studies and specifically the work of [RG11]. Coca croppers from
Guaviare, for example, are disposed to go to Norte de Santander if
the conditions force them to do so. Moreover, although Orinoqúıa and
Amazońıa which are supposed to be non-suitable places to cultivate,
there are in fact crops there. In [RG11] Rocha Garćıa describes som
aspects of this space dynamics, se Figure 3.4.

3.2 Qualitative analysis of the model

3.2.1 First approach to identify solution curves

Here we use a very simple idea to find a surface whose contour line are so-
lution curves of the system. This approach does not work in order to study
stability but at least give some clues about the behavior of solution curves.

We first use a common simplification of the model using the fact that the
population is constant and so R = N − S − I. Therefore, the resulting two
dimensional system is,

23



Figure 3.4: Changes in the cultivation area in 2001 - 2009. Source: [RG11]
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dS

dt
= −β1

I

N
S (3.1)

dI

dt
= β1

I

N
S + β2I − β2

I

N
S − β2

I2

N
− pI. (3.2)

The idea is the same we have used to find solution curves of the classic
SIR model. In order to obtain the desired contours we divide the equation
for I by the equation of S in order to get a single ODE,

dI

dS
=

(β1 − β2)IS + (β2 − p)IN − β2I2

−β1IS

= −1 +
β2
β1

+

(
p− β2
β2

)
N

1

S
+

β2
β1S

I.

So we obtain a linear ODE. An integrating factor for this equation is

e
−β2
β1

∫
dS
S = S−β2/β1 .

Let us call α := β2/β1. Therefore,

(
IS−α

)′
= (α− 1)Sα +

(
p− β2
β1

)
NS−α−1

⇒ IS−α =
(α− 1)S−α

−α + 1
+

(
p− β2
β1

)
N
S−α

−α
+ C

= −S1−α +

(
β2 − p
αp

)
NS−α + C

⇒ I = −S +

(
β2 − p
β2

)
N + CSβ2/β1 .

So the solution curves lie in contour lines of the form

I + S −
(
β2 − p
β2

)
N = CSβ2/β1 .
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Figure 3.5: Some of the trayectories obtained by dividing the equations

26



3.2.2 Equilibria and linear stability

Now we use the tools of the theory of ODE modelling to study the qualitative
structure of the model and we demonstrate the global asymptotic stability
of the endemic equilibrium.

We first make a usual change of variables

s =
S

N
, i =

I

N
, r =

R

N

in order to work with proportions instead of quantities and avoid the depen-
dence on N. The resulting system is the following

ṡ = −β1is
i̇ = β1is+ β2ir − pi
ṙ = pi− β2ir,

and taking into account that s+ i+ r = 1 we reduce the system to

ṡ = −β1is (3.3)

i̇ = (β2 − p)i+ (β1 − β2)is− β2i2. (3.4)

From this we get the following isoclines:

• s′ = 0 ⇒ i = 0 or s = 0. So the s and i axis are isoclines.

• i′ = 0⇒ i(β2− p+ (β1 − β2)s− β2i) = 0 ⇒ i = 0 or

i =
β2 − p
β2

+ (
β1 − β2
β2

).

Taking the intersection of them we get the following equilibrium points:

• The s axis, or crop free line equilibria (CFE).

• The endemic equilibrium
(

0, β2−p
β2

)
, provided β2 > p
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The linearisation matrix of the system is[
− β1i −β1s

(β1 − β2)i β2 − p+ (β1 − β2)s− 2β2i

]
.

Then, the linearisation matrix at the CFE line is

J(s, 0) =

[
0 −β1s
0 β2 − p+ (β1 − β2)s

]
,

from what we get that the eigenvalues are λ1 = 0 and λ2 = β2−p+(β1−β2)s.
For the sign of λ2 we have two cases:

• Case 1: β2 > β1. Here, λ2 > 0 iff s <
β2 − p
β2 − β1

, and this point belongs

to our region of interest iff β1 < p < β2

• Case 2: β1 > β2. Here, λ2 > 0 iff s >
β2 − p
β2 − β1

, and this point belongs

to our region of interest iff β2 < p < β1.

The linearisation matrix at the endemic equilibrium point is

J

(
0,
β2 − p
β2

)
=

 −β1
β2 − p
β2

0

(β1 − β2)(β2 − p)
β2

p− β2

 ,
so the endemic equilibrium is hyperbolic if β2 6= p and by the by the Hartman-
Grobman theorem, the linearized system would have the same quality struc-
ture as the nonlinear one. The eigenvalues are −β1 β2−pβ2

and p−β2 which are
both negative provided β2−p > 0 so the endemic equilibrium point is locally
asymptotically stable. The i axis is a stable curve for the endemic equilib-
rium and it is in fact invariant because if s = 0, s′ = 0, and if i(0) ≶ β2−p

β2
then i′ ≷ 0. Now if we consider s+ i, we get that

s′ + i′ = i(β2 − p− β2(i+ s)).

Then s′ + i′ ≶ 0 if i + s ≷
β2 − p
β2

. Thus, the triangle formed by the posi-

tive axis and the line s + i =
β2 − p
β2

is positively invariant.The line is also
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invariant because there s′ + i′ = 0 and it is a joining curve of an unstable

equilibrium point

(
β2 − p
β2

, 0

)
and a stable one

(
0,
β2 − p
β2

)
, so it is a hete-

rocline curve.

Altogether, we have that the interior of the triangle is positively invariant
so by the Poincaré-Bendixson theorem, the omega limit of any point is the
endemic equilibrium or a periodic orbit.

3.2.3 A Lyapunov function for the system

We make use of a well known function 1 in order to construct Lyapunov
functions for SIR models with non-linear incidence.

Ṽ (s, i) = s− s̄ ln(s) + i− ī ln(i),

where (s̄, ī) is an equilibrium point. It is not hard to guess where does it
come from when we remember the construction of a curve to identify the
solution curves of the classic SIR model. The Lyapunov function will be

V (s, i) = s− s̄ ln(s) + i− ī ln(i)− Ṽ (s̄, ī),

which is just the previous one minus the evaluation of itsef in the equilibrium
in order to impose it the condition that V (s̄, ī) = 0. With such a function
we are going to show the instability of the crop-free equilibrium (1, 0) and
the asymptotic stability of the endemic equilibrium.

For the crop-free equilibrium the Lyapunov function is

VCFE(s, i) = s+ i− ln(s)− 1.

Let us convince ourselves that it is a Lyapunov function:

• VCFE(1, 0) = 0 and,

• ∂V

∂i
= 1, so the function is constant along lines paralel to the i axis.

∂V

∂s
= 1 − 1

s
< 0 since 0 < s ≤ 1, so the function is decreasing in the

1This a commonly used function in mathematical Ecology and Epidemiology. For
general Lyapunov function for these kind of models see [Kor06] or [KW02].
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positive s direction. Now, for ”small” r > 0, V (r, 0) = r − ln(r) > 0
and V (1, 0) = 0. Thus, the function is indeed, postive in the desired
region.

A graph of the contour lines of function VCFE is shown in Figure 3.6.

Figure 3.6: Contour lines of the Lyapunov function at the CFE equilibrium

Now, computing the derivative of V along solution curves we get,

V̇ (s, i) =
[
1− 1

s
1
] [ −β1si

(β2 − p)i+ (β1 − β2)is− β2i2
]

= −β1si+ β1i+ (β2 − p)i+ (β1 − β2)is− β2i2

= (β2 + β1 − p)i− β2is− β2i2,

which is positive if and only if

i+ s < 1 +
β1 − p
β2

,

and this actually holds for every feasible (s, i), provided β1 > p. Here the
word feasible means s ≤ 0, i ≤ 0 and i + s ≤ 1. Therefore, by theorem 4
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(1, 0) is an unstable equilibrium point.

For the endemic equilibrium point, the appropiate Lyapunov function is

VEND(s, i) = i+ s− β2 − p
β2

ln(i)− β2 − p
β2

+
β2 − p
β2

ln

(
β2 − p
β2

)
.

A graph of the contour lines of function VCFE is shown in Figure 3.7.

Figure 3.7: Contour lines of the Lyapunov function at the endemic equilib-
rium

Again, since ln(i) < 0 for i ∈ (0, 1] the function is positive in the region
of interest. Computing the derivative along solution curves we get,

V̇ (s, i) =
[
1 1− β2−p

β2i

] [ −β1si
(β2 − p)i+ (β1 − β2)is− β2i2

]
= −(β2 − p)2

β2
+ 2(β2 − p)i+

(β2 − p)(β2 − β1)
β2

s− β2is− β2i2.
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We want to proof that this is negative. To do so, we will show that the
maximum is negative.

First, we look for local maxima inside the feasible region.

∇V̇ (s, i) =

[ (β2−p)(β2−β1)
β2

− β2i
2(β2 − p)− β2s− 2β2i

]
=

[
0
0

]
⇐⇒ i =

(β2 − p)(β2 − β1)
β2
2

, s =
2β1(β2 − p)

β2
2

,

and since,

s+ i =
(β2 − p)(β1 + β2)

β2
2

=

(
1− p

β2

)(
1 +

β1
β2

)
,

which is larger than 1 provided β2
p
> 1 . Thus, there are no extremal values

in the feasible region. For the boundary we restrict the function for each of
the three parts 2.

• s = 0 : ⇒ V̇ (0, i) = (β2−p)2
β2

+ 2(β2 − p)i− β2i2, which is cuadratic in i

and attains a maximum at β2−p
β2

with value 0. But note that the point

(0, β2−p
β2

) is exactly the equilibrium point.

• i = 0 : ⇒ V̇ (s, 0) = − (β2−p)2
β2

+ (β2−p)(β2−β1)
β2

s which is linear in s with

positive slope so it attains a maximum in s = 1 with value (β2−p)(p−β1)
β2

,

which is negative provided the same condition as before, β2
p
> 1 .

• s+ i = 1 :

V̇ (s, i) = −(β2 − p)2

β2
+ 2(β2 − p)i+

(β2 − p)(β2 − β1)
β2

(1− i)

− β2i(1− i)− β2i2

= −(β2 − p)(β1 − p)
β2

+
β2β1 − β2p− β1p

β2
i.

2We decided to do it by hand because it is easy and we make zero the probability of
numerical noise.
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Note that the slope of this line is β1 − p(1 + β1/β2) which is positive
if β1

p
> 1 + β1

β2
. In this case, it attains a maximum at i = 1 with value

−p2
β2

< 0!

Finally, we have shown that V̇ (s, i) < 0 for all feasible (s, i) except the equi-
librium point. Then, the endemic equilibrium (0, β2−p

β2
) is globally asymptot-

ically stable.
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Chapter 4

Conclusions and further
investigation

4.1 Conclusions

We have proposed an epidemic SIR model for coca cultivation in Colombia.
It differs from the classical SIR model in the reinfection term. A justification
to propose such a model is based on social and technical studies we found
in [RG11] and [UNO]. In the former, Rocha Garćıa use terms like coales-
cence, fragmentation and contagion, to describe the space dynamics of coca
crops. He talks about coca clusters that have the ability to move to even
far places when conditions are adverse. We found out that, as a system of
ordinary differential equations, the model has two equilibrium points, a crop
free equilibrium, when there are no department with coca crops, and an en-
demic equilibrium, which is basically the current situation in Colombia, with
the majority of the departments with coca crops. A Lyapunov function has
been constructed to show that the former is an unstable equilibrium and the
latter is globally asymptotically stable. This means that, according to the
model, the current dynamic of coca crops shows a trend towards the endemic
equilibrium with any initial conditions. It is also worth to emphasise a char-
acteristic of this model that is possibly the reason for the existence of such
a strong endemic equilibrium, and is the value of β2 which is so larger than
the other parameters. This tells us that, different from almost any other in-
fection where partial recovery means partial immunity, here the probability
of reinfection is so much larger to even the probability of become infected
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for the firs time. Mathematically speaking, this tells also that the parameter
worthy of been reduced is β2.
We have not given so much importance to the basic reproduction number
R0, which in this case is β1

p
, because it is a threshold value that tells us

whether there is going to exist an epidemic or not. In our case R0 > 1. Since
the situation in Colombia is already in an endemic state, we thought that it
was more important to analyse the endemic equilibrium in the sense that we
already know the situation at the beginning with the growth of coca crops
during the 80’s and 90’s [RG11], [UNO].

4.2 Further investigation

This is a first attempt to model coca crops via mathematical epidemiol-
ogy and several things to do are proposed for future work. One of them is
to implement a stochastic component to the model including the informa-
tion of coca crops per municipalities instead of departments. Moreover, a
more precise model would partition the territory in cells rather than political
boundaries. Such a model could also implement a stochastic variable to each
cell that measures its vulnerability to the existence of coca crops, based on
Rocha’s analysis of the coalescence-fragmentation intensity and his table of
space correlation of certain variables like area of coca crops, vulnerability,
environmental conflict in the use of water and ground, and roads density
[RG11] (Anexo A: Análisis espacial de la coca).

It will be also interesting to combine the model with an SIRS model,
additioning a rate of transfer of individuals from the recovered compartment
into de susceptible one. Moreover, since there exists a new policy of territorial
consolidation, it will be appropiate to try a vaccination model if this policy
show positive results in the protection of the recovered territories.
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Chapter 5

Appendices

5.1 Bifurcation at β2 = p

In Figure (5.1) we show a bifurcation diagram to illustrate the changes in
the stability of the endemic equilibrium depending on β2.

5.2 Calculation of the constants β1, β2, and p

In order to compute the constants of the model we use data from the Coca
Cultivation Survey implemented by the UNODC (United Nations Office on
Drugs and Crime) and some standard technics of regression. It is important
to take into account that these official and technical data exist since 2002
which was the first year when satellite photographs were taken in order to es-
timate the area of coca crops, by the SIMCI (Sistema Integrado de Monitoreo
de Cultivos Iĺıcitos). The number of hectares in each department from 2002
to 2011 is shown in Table 5.2. In order to compute de desired constants,
we first count the number of territories in each compartment per year. With
these data we construct three rows with the information of migration from
one compartment to another, this is, one for S toI, one for I to R and one
for R to I. Then we construct two rows: in one row we write on each entry,
the value # of susceptibles times # of infected/total number of territories.
In the other one, we put # of susceptibles times # of recovered/total num-
ber of territories. With the former row and the row corresponding to the
migration from S to I we compute the coefficient of the linear regression,
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Figure 5.1: Bifurcation diagram. The vertical axis corresponds to the en-
demic equilibrium and the horizontal one corresponds to β2.

and we repeat the same for the latter row and the row concerning migrations
from R to I. This procedure gives us the coefficients β1 and β2 respectively.
For p we compute the linear regression between the row I to R and the row
with the number of infectives (since this value depends only on the number
of infectives).

With this procedure, we derive the constants of the model, β1 = 0.036,
β2 = 0.693 and p = 0.014.
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Figure 5.2: Evolution of model vs. reality
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Departamento Área 2001 2002 2003 2004 2005
Nariño 33268 7494 15131 17628 14154 13875
Guaviare 53460 25553 27381 16163 9769 8658
Cauca 29308 3139 2120 1443 1266 2705
Putumayo 24885 47120 13725 7559 4386 8963
Antioquia 63612 3171 3030 4273 5168 6414
Córdoba 25020 652 385 838 1536 3136
Chocó 46530 354 0 453 323 1025
Meta 85635 11425 9222 12814 18740 17305
Boĺıvar 25978 4824 2735 4470 3402 3670
Vichada 100242 9166 4910 3818 4692 7826
Caquetá 88965 14516 8412 7230 6500 4988
Norte de Santander 21658 9145 8041 4471 3055 844
Vaupés 54135 1918 1485 1157 1084 671
Valle del Cauca 22140 184 111 37 45 28
Santander 30537 415 463 632 1124 981
Guaińıa 72238 1318 749 726 721 752
Amazonas 109665 532 784 625 783 897
Arauca 23818 2749 2214 539 1552 1883
La Guajira 20848 385 354 275 556 329
Magdalena 23188 480 644 484 706 213
Boyacá 23189 245 118 594 359 342
Caldas 7888 0 0 54 358 189
Cundinamarca 24210 22 57 57 71 56
Cesar 22925 0 0 0 0 0
Atlántico 3388 0 0 0 0 0
Sucre 10670 0 0 0 0 0
Risaralda 4140 0 0 0 0 0
Quind́ıo 1845 0 0 0 0 0
Tolima 23562 0 0 0 0 0
Huila 19890 0 0 0 0 0
Casanare 44640 0 0 0 0 0
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Departament 2006 2007 2008 2009 2010 2011
Nariño 15606 20259 19612 17639 15951 17231
Guaviare 9477 9299 6629 8660 5701 6839
Cauca 2104 4168 5422 6597 5908 6066
Putumayo 12254 14813 9658 5633 4785 9951
Antioquia 6157 9926 6096 5096 5350 3104
Córdoba 1216 1858 1710 3113 3889 1088
Chocó 816 1080 2794 1789 3158 2511
Meta 11063 10386 5525 4469 3008 3004
Bolivar 2382 5632 5847 5346 3324 2207
Vichada 5523 7218 3174 3228 2743 2264
Caquetá 4967 6318 4303 3985 2578 3327
Norte de Santander 488 1946 2886 3037 1889 3490
Vaups 460 307 557 395 721 277
Valle del Cauca 281 453 2089 997 665 981
Santander 866 1325 1791 1066 673 595
Guaina 753 623 625 606 446 318
Amazonas 692 541 836 312 338 122
Arauca 1306 2116 447 430 247 132
La Guajira 166 87 160 182 134 16
Magdalena 271 278 391 169 121 46
Boyacá 441 79 197 204 105 93
Caldas 461 56 187 186 46 46
Cundinamarca 120 131 12 0 32 18
Cesar 0 0 5 0 0 0
Atlántico 0 0 0 0 0 0
Sucre 0 0 0 0 0 0
Risaralda 0 0 0 0 0 0
Quindo 0 0 0 0 0 0
Tolima 0 0 0 0 0 0
Huila 0 0 0 0 0 0
Casanare 0 0 0 0 0 0

Table 5.1: Number of infected hectares per department
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