ANÁLISIS DE VIABILIDAD ECONÓMICA: SISTEMA CONSTRUCTIVO LIGHT STEEL FRAMING EN COLOMBIA.

José Luis Lamus Rodríguez
Cód. 200914262

Asesor:
Hernando Vargas

UNIVERSIDAD DE LOS ANDES
FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL
MAESTRIA EN INGENIERÍA CIVIL
Bogotá D. C.
2015
Agradecimientos

Quiero agradecer a todas aquellas personas que de alguna forma intervinieron y ayudaron con la realización de este proyecto investigativo, a las empresas que facilitaron la información y pusieron toda la disponibilidad. Agradezco a la empresa PRODESA SA por permitir realizar el trabajo sobre uno de sus proyectos y permitir el acceso a toda la información necesaria, muchas gracias por su disposición de ayuda a los ingenieros Vladimir Rozo y Rafael Díaz.

De igual forma, agradecer a la empresa MATECSA por suministrar toda la información necesaria para el conocimiento del light steel framing y en especial al Ingeniero Freddy González por ayudarme con los diseños estructurales en Light Steel Framing, y siempre tener la disposición para colaborar con el proyecto.

Así mismo, agradecer a María Carolina Mayorga Calderón, Julieth Paola Pérez Correa y Santiago Ramírez Bayona, quienes me permitieron acceso a el trabajo que antecede a este proyecto y sobre el cual se fundamenta esta línea de investigación. Por ultimo, agradecer al Ingeniero Hernando Vargas por el apoyo y asesoría brindada durante todo el desarrollo del proyecto.
Tabla de contenido

Agradecimientos .. 1

1. Introducción .. 7
2. Objetivos ... 9
 2.1 Objetivo General .. 9
 2.2 Objetivos Específicos ... 9
3. Marco Teórico ... 11
 3.1 Descripción Sistema Constructivo Light Steel Framing .. 11
 3.1.1 Perfiles .. 14
 3.1.2 Cimentación .. 16
 3.1.3 Paneles de Muros ... 17
 3.1.4 Entrepisos .. 19
 3.1.5 Cubierta ... 20
 3.1.6 Cerramientos y revestimientos típicos .. 21
 3.1.7 Métodos de ensamble ... 27
 3.2 Estado del Arte ... 30
 3.2.2 Light Steel Framing en las regiones ... 30
 3.2.3 Centros de Investigación .. 36
 3.2.4 Normatividad .. 36
 3.2.5 Sostenibilidad .. 38
4. Metodología .. 41
5. Aportación al Conocimiento Científico .. 43
 5.1 Características proyecto .. 43
 5.2 Diseño Arquitectónico Casas .. 44
 5.3 Diseños Estructurales .. 47
 5.3.1 Mampostería Estructural Parcialmente Reforzada .. 47
 5.3.2 Light Steel Framing ... 51
6. Presentación y Discusión de Resultados .. 55
 6.1 Costos Directos ... 59
 6.1.1 Cimentación .. 63
 6.1.2 Estructura ... 66
 6.1.3 Revestimientos y Acabados ... 73
 6.1.4 Cubierta ... 79
 6.1.5 Análisis de Resultados ... 83
 6.2 Plazo de Ejecución .. 85
 6.2.1 Light Steel Framing ... 86
 6.2.2 Mampostería Estructural .. 89
 6.3 Costos Indirectos ... 93
 6.4 Modelación Financiera ... 97
7. Análisis Masificación Sistema Constructivo ... 107
8. Análisis Normativo .. 113
9. Conclusiones .. 119
10. Referencias Bibliográficas

Índice de Tablas

Tabla 1. Características perfiles estructurales - Fuente: (Matecsa SA, 2015).. 15
Tabla 2. Normas técnicas acerca del LSF- Fuente: (Mayorga, Perez, & Ramirez, 2014).. 37
Tabla 3. Peso total Estructura Metálica LSF. (Fuente: Elaboración Propia).. 53
Tabla 4. Condiciones y Características de Análisis Comparativo – Fuente: (Elaboración Propia).. 55
Tabla 5. Análisis de Salarios Mano de Obra – (Fuente: Elaboración Propia).. 61
Tabla 6. Cuadrillas para Análisis de Precios – Fuente: (Elaboración Propia).. 62
Tabla 7. Costos de Materiales - Cimentación.. 63
Tabla 8. Análisis de presupuesto Cimentación LSF (Fuente: Elaboración Propia).. 64
Tabla 9. Análisis de presupuesto Cimentación Mampostería (Fuente: Elaboración Propia).. 65
Tabla 10. Costos Materiales Estructura LSF - Fuente: (Matecsa SA, 2013).. 66
Tabla 11. Cantiades Estructura LSF.. 66
Tabla 12. Costos Directos Capítulo Estructura LSF (Fuente: Elaboración Propia).. 67
Tabla 13. Costo Materiales Capítulo Estructura Mampostería (Fuente: Elaboración Propia).. 70
Tabla 14. Costos Directos Capítulo Estructura Mampostería (Fuente: Elaboración Propia).. 71
Tabla 15. Costos de Materiales - Revestimientos y Acabados -Fuente: (Elaboración Propia).. 73
Tabla 16. Cantiades Revestimientos/Acabados (Fuente: Elaboración Propia).. 74
Tabla 17. Análisis de Presupuesto Revestimientos/ Acabados LSF (Fuente: Elaboración Propia).. 74
Tabla 18. Cantiades Revestimientos y Acabados - Mampostería Estructura (Fuente: Elaboración Propia).. 76
Tabla 19 Análisis de Presupuesto Revestimientos/ Acabados Mampostería Estructural (Fuente: Elaboración Propia).. 77
Tabla 20. Costos Directos Capítulo Cubierta LSF (Fuente: Elaboración Propia).. 79
Tabla 21. Costos Directos Capítulo Cubierta Mampostería (Fuente: Elaboración Propia).. 81
Tabla 22. Resumen de Resultados - Fuente: (Elaboración Propia).. 83
Tabla 23. Duraciones de actividades y capítulos LSF (Fuente: Elaboración Propia).. 86
Tabla 24. Matriz de duraciones y relaciones LSF- Fuente: (Elaboración Propia).. 87
Tabla 25. Tiempos y Holguras LSF - Fuente: (Elaboración Propia).. 88
Tabla 26 Duraciones de actividades y capítulos Mampostería Estructural - Fuente: (Elaboración Propia).. 89
Tabla 27. Matriz de duraciones y relaciones Mampostería - Fuente: (Elaboración Propia).. 91
Tabla 28. Tiempos y Holguras Mampostería Estructural - Fuente: (Elaboración Propia).. 91
Tabla 29. Costos Indirectos LSF - Fuente: (Elaboración Propia).. 93
Tabla 30. Costos Indirectos LSF - Fuente: (Elaboración Propia).. 94
Tabla 31. Flujo de Ventas – LSF- Fuente: (Elaboración Propia).. 98
Tabla 32. Flujo de Ventas - Mampostería Estructural - Fuente: (Elaboración Propia).. 98
Tabla 33. Análisis de Flujo de Caja - 8 Viviendas LSF- (Fuente: Elaboración Propia).. 99
Tabla 34. Análisis de Flujo de Caja - 8 Viviendas Mampostería Estructural – Fuente: (Elaboración Propia).. 100
Tabla 35. Análisis Uso de Acero Grado 50 - Entrepisos - Fuente : (Elaboración Propia).. 108
Tabla 36. Análisis Uso de Acero Grado 50 - Muros Primer Piso - Fuente : (Elaboración Propia).. 108
Tabla 37. Análisis Uso de Acero Grado 50 - Muros Segundo Piso - Fuente: (Elaboración Propia).. 109
Tabla 38. Análisis Uso de Acero Grado 50 - Muros Segundo Piso - Fuente: (Elaboración Propia).. 109
Tabla 39. Peso total Estructura Metálica LSF – Uso Acero Grado 50. (Fuente: Elaboración Propia).. 110
Tabla 40. Costos Directos Capítulo Estructuras - Uso Acero G 50 (Fuente: Elaboración Propia).. 111
Tabla 41. Propuesta de inclusión en Tablas A.3 - Fuente: (Carlos A. Mendoza, 2015).. 118

Índice de Figuras

Figura 1. Elementos Sistema LSF Fuente: (Sarmanho Freitas & Moraes de Castro, 2007).. 11
Figura 2. Distribución de cargas en muros LSF Fuente: (Sarmanho Freitas & Moraes de Castro, 2007).. 12
Figura 3. Perfiles Usados en Light Steel Framing Fuente: (Sarmanho Freitas & Moraes de Castro, 2007).. 14
Figura 4. Detalle longitudinal perfiles Fuente: (Matecsa S.A, 2015).. 15
Figura 5. Tipos de cimentación comunes en LSF Fuente: (Camara Colombiana de la Construccion- Valle del Cauca, 2012).. 16
Figura 6. Conector de Anclaje Sísmico Fuente: (Camara Colombiana de la Construccion- Valle del Cauca, 2012).. 17
Figura 7. Sección Típica Muros Fuente: (Sarmanho Freitas & Moraes de Castro, 2007).. 18
Figura 8. Arrostramiento en tipo “X”, Fuente: (Sarmanho Freitas & Moraes de Castro, 2007).. 18
Figura 9. Estructura Entrepiso LSF Fuente: (Sarmanho Freitas & Moraes de Castro, 2007).. 19
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.
Jose Luis Lamus R. - 200914262

Figura 10. Cubierta Plana Fuente: (Sarmanho Freitas & Moraes de Castro, 2007)...20
Figura 11. Cubierta Inclinada Fuente: (Sarmanho Freitas & Moraes de Castro, 2007)...21
Figura 12. Revestimientos en placas OBS Fuente: (Acedur)...22
Figura 13. Instalación de "siding" vinílico Fuente: (Sarmanho Freitas & Moraes de Castro, 2007)...23
Figura 14. Diseño esquemático de cerramiento de mampostería de paneles LSF Fuente: (Sarmanho Freitas & Moraes de Castro, 2007)...24
Figura 15. Cerramiento con placas de fibrocemento Fuente: (Sarmanho Freitas & Moraes de Castro, 2007)...25
Figura 16. Transporte de paneles a obra Fuente: (Toribio, 2013)...28
Figura 17. Módulos para residencias Fuente: (Toribio, 2013)...29
Figura 18. Comparación de emisión de gases Fuente: (Guggemos Acree & Horvath, 2005)...38
Figura 19. Comparación de energía usada en el ciclo de vida del proyecto Fuente: (Guggemos Acree & Horvath, 2005)..39
Figura 20. Planta Casas TORCAZA Fuente: (Prodesa, 2010)...44
Figura 21. Corte Vertical Arquitectura Casa Fuente: (Prodesa)...45
Figura 22. Corte transversal Fuente: (Prodesa)...46
Figura 23. Plano Cimentación, y Muros Planta 1 Fuente: (Prodesa)...47
Figura 24. Esquema cimentación mampostería Estructural Fuente: (Alfonso Uribe Y CIA)...48
Figura 25. Localización de muros y Grouting Fuente: (Prodesa)...48
Figura 26. Planta Estructural Nivel 2 Mampostería (Fuente: Prodesa)...49
Figura 27. Planta Estructural Nivel 3- Mampostería (Fuente: Prodesa)...50
Figura 28. Planta Cubierta -Mampostería (Fuente: Prodesa)...50
Figura 29. Dimensiones Cimentación tipo Light Steel Framing. ...51
Figura 30. Planta Nivel 1 Modelo Light Steel Framing (Fuente: Diseño Estructural -Matecsa)...52
Figura 31. Planta cubierta Modelo Light Steel Framing (Fuente: Diseño Estructural -Matecsa)...53
Figura 32. Corte Muros Interiores LSF (Fuente: Elaboración Propia)...56
Figura 33. Corte Muros Exteriores LSF (Fuente: Elaboración Propia)...56
Figura 34. Corte Muros Interiores Mampostería Estructural Fuente: (Elaboración Propia)...57
Figura 35. Corte Muros Exteriores Mampostería Estructural Fuente: (Elaboración Propia)...57
Figura 36. Corte Entrepiso LSF Fuente: (Elaboración Propia)...57
Figura 37. Entrepiso Mampostería Estructural Fuente: (Elaboración Propia)...58
Figura 38. Porcentaje de aumento/ reducción de costos directos (Fuente: Elaboración Propia)...84
Figura 39. Flujo de Construcción Viviendas (Fuente: Elaboración Propia)...85
Figura 40. Diagrama de tiempos LSF (Fuente: Elaboración Propia)...89
Figura 41. Diagrama de Tiempos Mampostería Estructural Fuente: (Elaboración Propia)...92
Figura 42. Análisis económico LSF Fuente: (Elaboración Propia)...101
Figura 43. Análisis económico – Mampostería Estructural Fuente: (Elaboración Propia)...102
Figura 44. Distribución de Costos – Light steel framing Fuente: (Elaboración Propia)...103
Figura 45. Distribución de Costos – Mampostería estructural Fuente: (Elaboración Propia)...104
Figura 46. Inciso A.3.1.7 Título A NSR-10 Fuente: (Comision Asesora Permanente para el Regimen de la Construcciones Simo Resistente, 2010)...114
Figura 47. Tabla C1-1 - Coeficientes Ro y Do para LSF Fuente: (American Iron and Steel Institute, 2010)...115
1. Introducción

La necesidad de encontrar sistemas eficientes de construcción con el fin de mejorar la productividad y obtener beneficios en la industria ha hecho que se implementen nuevas tecnologías para tratar de cubrir la demanda mundial de vivienda en forma rápida y efectiva, es aquí donde el acero a encontrado su lugar en la construcción de viviendas tratando de cambiar el modelo de construcción pesada y lenta en la cual los sistemas convencionales enmarcan a la construcción.

Desde hace varios años se ha venido usando el acero en la construcción ya más que un simple refuerzo de las estructuras de concreto, paso a tener el papel principal con estructuras completamente de acero, y en los últimos años en los países anglosajones y europeos se ha venido aplicando como una solución eficaz para la construcción de edificios de baja y media altura las estructuras en **Light Steel Framing (LSF)**, la cual consiste en entramados de perfis metálicos conformados en frío y con el cual se han encontrado ventajas como una gran flexibilidad en el diseño, luces amplias, poco peso propio, la velocidad de construcción, entre otros aspectos que serán expuesto en el desarrollo del documento.

Actualmente en Colombia se han implementado muchas políticas de vivienda destinadas a ayudar a resolver el déficit de vivienda en el cual se encuentra inmerso el país, es por tanto que la industria de construcción ha tenido un crecimiento significativo en los últimos años. Basado en la anterior afirmación, con este proyecto se pretende realizar un análisis del sistema constructivo light steel framing el cual es poco conocido y usado en Colombia, puede tener algunos beneficios para las empresas constructoras y para la calidad de vida de la sociedad.

Para tal fin, este documento se plantea un análisis comparativos en diferentes aspectos de los sistemas constructivos "Mampostería Estructural "y “Light Steel Framing.". Teniendo al primero como uno de los sistemas mas usados para la construcción de casas en Colombia. Se realizara comparaciones de acuerdo a costos de obra, tiempo de obra, entre otros aspectos.
2. Objetivos

2.1. Objetivo General

El objetivo general de este proyecto es realizar un análisis de viabilidad al sistema constructivo Light Steel Framing en Colombia, por medio de un análisis comparativo con la mampostería estructural para la construcción de viviendas. Adicionalmente encontrar la características y limitaciones principales del sistema en Colombia.

2.2. Objetivos Específicos

- Realizar una descripción de las características principales del sistema Light Steel Framing.
- Analizar las ventajas y desventajas que la construcción con el sistema LSF puede tener con respecto al sistema tradicional de construcción de casas en Mampostería Estructural.
- Analizar costos y duraciones comparativamente entre el Light Steel Framing y en Mampostería Estructural.
- Analizar los costos indirectos asociados a la construcción de viviendas para los diferentes sistemas constructivos.
- Analizar una estructuración financiera de proyectos para ambos sistemas encontrando ventajas y desventajas
- Realizar un análisis de todos los resultados y exponer las principales limitaciones o ventajas que tiene el LSF en Colombia.
- Analizar el marco normativo del LSF en Colombia, encontrando ventajas y desventajas.
3. Marco Teórico.

3.1. Descripción Sistema Constructivo Light Steel Framing

El sistema Light Steel Framing (LSF), es un sistema constructivo de concepción racional cuya principal característica es una estructura constituida por perfiles formados en frío de acero galvanizado que son utilizados para la composición de paneles estructurales y no estructurales, vigas secundarias, vigas de piso, cabios de techo y otros componentes. En la Figura 1. encontramos una descripción general de los elementos que componen el sistema constructivo LSF.

Figura 1. Elementos Sistema LSF
Fuente: (Sarmanho Freitas & Moraes de Castro, 2007)

El sistema está constituido estructuralmente por perfiles fabricados en lámina de acero galvanizado, mediante el proceso de rolado en frío. Este material metálico ofrece alta resistencia estructural y estabilidad física y química a agentes corrosivos, los componentes de la estructura metálica que conforman el LSF son los encargados de soportar y transmitir todas las cargas, vivas, muertas y demás ejercidas sobre la edificación. Esta transferencia, a diferencia de los sistemas convencionales, se logra por medio de una repartición de cargas más eficiente, es decir, en lugar
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.

Jose Luis Lamus R. - 200914262

de utilizar uno o más elementos verticales, de gran tamaño y volumen, se emplea un número mayor pero de menores dimensiones y poco peso, a distancias más cortas. (Camara Colombiana de la Construccion- Valle del Cauca, 2012)

Figura 2. Distribución de cargas en muros LSF
Fuente: (Sarmanho Freitas & Moraes de Castro, 2007)

Entre las características importantes del LSF encontramos las descritas en el documento “Contextualización del Light Steel Framing en Colombia y el mundo” (Mayorga, Perez, & Ramírez, 2014):

• Al basarse este sistema en perfiles de fabricación industrial, los elementos son estándares y tienen un comportamiento más uniforme que la madera que es un material natural.

• Acero de calidad, tales como aceros planos y cuadrados de acero puede sobrevivir a duras las condiciones meteorológicas, tales como terremotos, tifones huracanes, etc.

• El acero también es un material reciclado y es reciclable también. Esto hace que sea el entorno más amigable.

• Al tratarse de estructuras de acero es más sencillo alcanzar grandes luces, es decir que dada la extraordinaria resistencia del material y su escaso peso es más fácil y económico construir espacios con muros o pilares más alejados entre sí y fachadas con ventanas más grandes.

• Este sistema es muy propicio para la construcción de fachadas ventiladas, que son la
solución ideal para el funcionamiento bioclimático de las viviendas y la reducción del consumo energético porque mejora considerablemente el aislamiento térmico.

- Este sistema de construcción tiene un comportamiento formidable en situaciones tales como terremotos, motivo por el que su uso está muy extendido en las regiones del mundo que padecen estos problemas con más asiduidad (Estados Unidos, Chile, Turquía, entre otros).

A continuación se realizará una descripción de los componentes principales de la construcción con el sistema LSF.
3.1.1 Perfiles.

Como se mencionó anteriormente los perfiles del sistema LSF son hechos en acero galvanizado conformados en frío con espesores que varían entre 0.8 y 3.2 mm con anchos de ala entre 30 y 90 mm y alturas desde 35 a 350 mm según sean las exigencias estructurales a que se sometan. En ocasiones los perfiles pueden llevar perforaciones para permitir el paso de instalaciones. En la Figura 3, presenta un corte transversal de los perfiles galvanizados y sus principales utilizaciones.

![Tabla de perfiles](Figura 3. Perfiles Usados en Light Steel Framing)

Fuente: (Sarmanho Freitas & Moraes de Castro, 2007)

Se puede observar que los perfiles más usados son el "U" y "C", siendo el primero utilizado para la solera o el riel inferior y superior; y el segundo para los montantes o paralelos y en vigas de entrepisos.
En Colombia empresas dedicadas a la fabricación de perfiles en acero galvanizado formados en frío fabrican perfiles estructurales en “C” las cuales son utilizados para muros, entrepisos y cubiertas, en la Tabla 1 encontramos las características de perfiles que esta empresa posee. Adicionalmente, En la Figura 4, se puede encontrar todos los detalle de los perfiles utilizados en el sistema LSF.

<table>
<thead>
<tr>
<th>Perfil</th>
<th>Alma (H) (mm)</th>
<th>Aleta (B) (mm)</th>
<th>Calibre</th>
<th>Espesores (e) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S7541</td>
<td>75,0</td>
<td>41,0</td>
<td>22</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>1.5</td>
</tr>
<tr>
<td>S8941</td>
<td>89,0</td>
<td>41,0</td>
<td>22</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>1.5</td>
</tr>
<tr>
<td>S15041</td>
<td>150,0</td>
<td>41,0</td>
<td>20</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Figura 4. Detalle longitudinal perfiles
Fuente: (Matecsa S.A, 2015)
3.1.2 Cimentación

La cimentación es uno de los elementos primordiales de cualquier edificación, ya que es la responsable de brindar soporte y estabilidad a la construcción al conducir al terreno las cargas recibidas a través de su estructura. (Camara Colombiana de la Construccion- Valle del Cauca, 2012), es por tanto que es importante tener en cuenta en el análisis del sistema constructivo LSF las cimentaciones usadas.

Estas son algunas soluciones constructivas en cimentaciones más usadas en el LSF:

![Diagrama de cimentación en LSF](image)

Figura 5. Tipos de cimentación comunes en LSF

Fuente: (Camara Colombiana de la Construccion- Valle del Cauca, 2012)
En muros contra venteados, que hacen parte de la resistencia lateral sísmica de la edificación, es importante mantener una unión estable y resistente entre el perfil paral y el canal; asimismo, entre éste y la cimentación. Por ello, es necesario instalar un conector de anclaje a tensión para proporcionar rigidez al conjunto. (Camara Colombiana de la Construccion- Valle del Cauca, 2012)

3.1.3 Paneles de Muros

Las paredes que constituyen la estructura son llamados paneles estructurales o auto portantes; que están compuestos por una gran cantidad de perfiles galvanizados muy livianos, llamados montantes, que van separados entre sí por 400 o 600 mm. Esta dimensión es definida de acuerdo con el cálculo estructural, y determina la modulación del proyecto. Los paneles tienen la función de distribuir uniformemente las cargas y transmitirlas hasta el suelo.

En la Figura 7 encontramos una sección típica de muros donde se desglosa cada componente de los paneles. Siendo conformados principalmente por parales de perfiles tipo C y rieles de Perfiles Tipo U.
Para los muros que resisten cargas sísmicas normalmente se le aplica un arriostramiento el cual puede ser de distintas formas entre los más comunes se en cuenta el arriostramiento en “X” como se muestra en la Figura 8.

Este sistema permite la utilización de casi cualquier tipo de revestimiento para las diferentes terminaciones, tanto exteriores como interiores. Adicionalmente, existe una gran gama de
complementos como aislantes térmico, acústicos, entre otros, que permiten satisfacer todas las condiciones que el lugar de construcción exija con el fin de obtener siempre el confort del usuario final.

3.1.4 Entrepisos

El entrepiso está conformado por perfiles de canal y perfiles paral que actúan como vigas trabajando a flexión. Estos perfiles deben ser lo suficientemente rígidos para soportar todas las cargas provenientes de la cubierta, de los pisos superiores y las generadas por la carga viva (Toribio, 2013).

El entrepiso es el elemento estructural encargado de recibir las cargas y transmitirlas hacia los muros; por lo tanto, sus uniones deben tener tanto la resistencia como la flexibilidad necesaria para soportar esfuerzos de vientos, movimientos sísmicos y otras vibraciones sin sufrir daños.

![Figura 9. Estructura Entrepiso LSF](image)

Fuente: (Sarmanho Freitas & Moraes de Castro, 2007)

El entrepiso puede ser totalmente construido con el LSF de dos formas distintas: alineado o no alineado. El sistema lineal consiste en ubicar los parales de los muros superiores e inferiores alineados con las vigas de apoyo del entrepiso, haciendo que las cargas sean transmitidas directamente desde las vigas hacia los parales. (Toribio, 2013).
3.1.5 Cubierta

La estructura de la cubierta es alineada, igual que los forjados y paneles de pared. El concepto estructural en cuanto a la rigidización, colocación y elementos es prácticamente el mismo. La colocación de la estructura de la cubierta debe estar alineada con los montantes del panel para permitir la transmisión de las cargas hasta la cimentación. Cuando esta alineación no es posible por la disposición de la cubierta se colocará una viga dintel capaz de transmitir las cargas a los montantes no alineados. (Toribio, 2013)

Tipos de cubierta:

- Cubierta Plana

Para las cubiertas planas se utilizan soluciones húmedas de concreto aligerado como se muestra en la Figura 10. Para el manejo del agua se le deja una inclinación a la placa de concreto.

![Imagen de la Figura 10. Cubierta Plana](Fuente: (Sarmanho Freitas & Moraes de Castro, 2007))

- Cubierta inclinada

La estructura de la cubierta inclinada es similar a una estructura tradicional de madera, pero con perfiles de acero galvanizado. En el Steel Frame, un techo inclinado es posible a través de una estructura de cabios o cabriada.
La estructura se forma con la colocación de dos cabios en sentido opuesto apoyados sobre el montante de la pared de carga en uno de los extremos y en el otro, donde coincidirían los dos cabios, son unidos por una viga llamada “cumbre” (ver Figura 11), que es una viga compuesta por perfiles “C” y “U” (Toribio, 2013)

3.1.6 Cerramientos y revestimientos típicos

A continuación se presentan los principales cerramientos y revestimientos que se utilizan conjuntamente con las estructuras en Light Steel Framing.

Placa OSB

Las placas de OSB (Acedur)) pueden ser utilizadas como cerramiento de la cara interior y exterior de los paneles, cielorrasos, pisos y como substrato para la cobertura del tejado. Sin embargo, debido a sus características, no deben estar expuestas a la intemperie, por lo que necesitan un acabado impermeable en las superficies exteriores. Sus propiedades de resistencia mecánica, resistencia a impactos y de buena estabilidad dimensional posibilitan su uso en calidad de diafragma rígido cuando se aplican a los paneles estructurales y entrepisos (Sarmanho Freitas & Moraes de Castro, 2007). (Mayorga, Perez, & Ramirez, 2014)
“Siding” vinílico

El "siding" es un revestimiento de fachadas, compuesto de tablillas paralelas, muy comunes en las residencias norteamericanas. El “siding” se usa debido a que presenta un buen desempeño frente a otros materiales y debido a que se tiene una concepción de ejecución industrializada. Su principal ventaja es ser una alternativa de construcción más rápida y limpia que los revestimientos tradicionales, tales como revoque, pintura y revestimientos cerámicos (Sarmanho Freitas & Moraes de Castro, 2007).

El "siding" vinílico es un material muy versátil, de fácil aplicación, que no necesita de muchos cuidados de mantenimiento. Se vende en el mercado en forma de paneles compuestos por tablillas dobles de 5 metros de largo y 25 metros de ancho (dichas medidas pueden variar en cada país), con texturas que imitan madera o de color blanco (Sarmanho Freitas & Moraes de Castro, 2007).
La mampostería es un revestimiento independiente de la estructura y funciona vinculado a ella por medio de conectores metálicos. Sin embargo, dado que el concepto de edificaciones con mampostería se aparta del sistema Light Steel Framing que propone una obra “seca” con rapidez de ejecución y métodos industrializados que reducen el desperdicio de material y mano de obra, su uso se ve limitado a elementos decorativos de ladrillo a la vista en fachadas. (Mayorga, Perez, & Ramirez, 2014).

Al igual que el cerramiento mencionado previamente, es necesario impermeabilizar las paredes con una membrana de polietileno a fin de garantizar la estanqueidad de los paneles. La membrana se atornilla a la estructura, entre ésta y la pared de mampostería.

La pared de mampostería no es soportada por la estructura, sólo se vincula a ella por medio de conectores (ver Figura 14). Por lo tanto, los únicos movimientos restringidos entre la fachada y la estructura son las provenientes de las deformaciones horizontales provocadas por la acción del viento y los sismos. Las cargas verticales, generadas por su propio peso son transferidas directamente a las fundaciones, aliviando la estructura de esa carga (Sarmanho Freitas & Moraes de Castro, 2007).
Placa de yeso-cartón

En el sistema LSF, las placas o chapas de yeso-cartón constituyen el cerramiento vertical de la cara interior de los paneles estructurales y no estructurales exteriores de la edificación, y también el cerramiento de los tabiques y paredes interiores.

La placa de yeso-cartón es estructurada, generalmente monolítica, de montaje por acople mecánico y constituida generalmente por una estructura de perfiles metálicos y cerramiento de placas de yeso-cartón. Además, es una placa liviana debido a que no tiene una función estructural y su densidad superficial varía entre 6.5 kg/m2 y 14 kg/m2, según su espesor.

Estas placas son fabricadas industrialmente y compuestas de una mezcla de yeso, agua y aditivos, revestidas en ambos lados con láminas de cartón, que le confiere a estas placas resistencia a la tracción y la flexión (Sarmanho Freitas & Moraes de Castro, 2007). (Mayorga, Perez, & Ramirez, 2014).

En general están disponibles los siguientes tipos de placa:

- Las placas Standard (ST) para ser aplicadas a paredes de áreas secas.

La placa Resistente a la Humedad (RH), también conocida como placa verde, para paredes destinadas a ambientes sujetos a la acción de la humedad, por tiempo limitado en forma intermitente.
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.
Jose Luis Lamus R. - 200914262

- La placa Resistente al Fuego (RF), aplicada en áreas secas, en paredes con exigencias especiales de resistencia al fuego.

Placa de fibrocemento

Estas placas pueden usarse como cerramiento exterior o interior de los paneles, principalmente en áreas que suelen mojarse, substituyendo la placa de yeso-cartón y en áreas expuestas a la intemperie, como se muestra a continuación:

![Figura 15 Cerramiento con placas de fibrocemento](image)

 Fuente: (Sarmanho Freitas & Moraes de Castro, 2007).

Para su uso en entrepisos requieren un substrato de apoyo, que puede ser de chapas de madera laminada, para proporcionales a las placas de fibrocemento resistencia a la flexión.

Por definición, toda chapa delgada que contenga cemento en su composición se llama cementicia (de fibrocemento). Las placas están compuestas básicamente por una mezcla de cemento Portland, fibras de celulosa o sintéticas y agregados. Sin embargo, las placas disponibles en el mercado presentan algunas diferencias fundamentales. La principal de ellas es que existen dos grupos: aquellas con fibras dispersas en la matriz, y otras con mallas de fibra de vidrio en ambas superficies. Los productos del primer tipo fueron desarrollados a partir de matrices de cemento que contenían antiguamente amianto. Debido a las restricciones legales del uso de este tipo de fibra, se impusieron las chapas de fibras plásticas, de vidrio o celulosa (Sarmanho Freitas & Moraes de Castro, 2007). (Mayorga, Perez, & Ramirez, 2014).
Las principales características de las placas de fibro cemento son:

- Elevada resistencia a impactos, lo que posibilita su uso en cerramientos exteriores.
- Gran resistencia a la humedad, pudiendo estar expuesta a la intemperie.
- Es incombustible.
- Puede ser curvada después de saturada con agua, permitiendo curvaturas en el sentido del largo con hasta 3 metros de radio.
- Tiene poco peso propio, hasta 18 kg/m2 facilitando el transporte y manejo, por lo que no requiere equipos especializados para su manipulación.
- Es compatible con la mayoría de los acabados o revestimientos: pintura acrílica, cerámicas, piedras naturales, etc.
- Se corta fácilmente con herramientas para corte de metal duro.
- Rapidez de ejecución: sistema de montaje semejante al de la placa de yeso-cartón.

Sus dimensiones varían según el fabricante, aunque las placas utilizadas para sistemas de cerramiento en LSF son comercializadas en dimensiones que tienen un ancho fijo de 1.20 m y largos que varían entre 2 m, 2.4 m y 3 m (Mayorga, Perez, & Ramirez, 2014). Estas placas son encontradas en diferentes espesores que van desde 6 mm hasta 20 mm de acuerdo a cual sea su aplicación y resistencia necesaria.
3.1.7 Métodos de ensamblaje

Construcción in situ

Este método aumenta las actividades en la obra, y es ideal en lugares donde la prefabricación no es posible. Los perfiles son cortados en obra. Las vigas, cubiertas, cabriadas, arriostramiento son montados en obra. Con este método se facilita el transporte, ya que no se necesita la movilización de paneles armados o elementos de gran formato (Toribio, 2013)

El diseño y montaje de estructuras de acero es el mismo que para madera, excepto los componentes se atornillan juntos en lugar de clavarse. Las viguetas de acero se pueden pedir en longitudes largas para abarcar el ancho de la casa. Esto acelera el proceso de elaboración y elimina las juntas traslapadas. Finalmente, los materiales de revestimiento y de acabado se fijan con tornillos o clavos neumáticos. (Mayorga, Perez, & Ramirez, 2014).

Sistemas panelizados

Los paneles que conformarán los muros portantes o no portantes, los arriostramiento, entrepiso, cubierta y cabriada son prefabricados en taller (fuera de obra) y montados en la obra. Mediante tornillos auto perforantes los paneles son conectados in situ. A los paneles se les pueden agregar algunos materiales de cerramientos para que lleguen más terminados a la obra. De esta manera aumenta la calidad de fabricación y se reduce la actividad de mano de obra (Toribio, 2013)

La panelización consiste en un sistema de pre-fabricación de paredes, entrepisos y/o componentes del techo en secciones. Este método de construcción es más eficiente donde hay una repetición de tipos y dimensiones del panel. Los paneles se pueden hacer en la tienda o en el campo a partir de plantillas que se desarrollan para cada tipo de panel. Las vigas y viguetas de acero se ordenan cortadas a la longitud de la mayoría de los paneles de trabajo, se colocan en la plantilla y se sujetan, ya sea por tornillos o soldadura. El revestimiento exterior, o en algunos casos, el acabado exterior completo, se aplica al panel antes de la construcción. (Mayorga, Perez, & Ramirez, 2014).
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.
Jose Luis Lamus R. - 200914262

Una ventaja importante de penalización es la velocidad de la construcción. Un trabajo por lo general se puede enmarcar en aproximadamente una cuarta parte del tiempo necesario para construirse. Cuando se considera que el sistema de acabado exterior puede ser también parte del panel, el tiempo total el ahorro puede ser aún mayor.

![Imagen de paneles en transporte]

Figura 16. Transporte de paneles a obra
Fuente: (Toribio, 2013)

Sistemas pre-diseñados

Son unidades totalmente acabadas en taller y transportadas a obra como módulos tridimensionales. Traen ya instalados los acabados interiores, instalaciones, cocina, aparatos sanitarios. Cuando llegan a obra se conectan y termina el revestimiento exterior y fachada (Toribio, 2013)

Debido a la alta resistencia y flexibilidad de diseño del acero, los sistemas innovadores son posibles, cosa que no resulta factible con otros materiales. Los sistemas de ingeniería típicamente ocupan un gran espacio en la carga primaria que transportan aumentando la cantidad de viajes que se realizan, por el contrario con este sistema se agrupan elementos primarios y secundarios reduciendo en gran medida la cantidad de viajes necesarios para transportar todo el material al sitio del proyecto. Este sistema utiliza tanto elementos horizontales secundarios para distribuir las cargas de viento a las columnas como acero de peso ligero para llenar espacios entre las columnas. Otra de las ventajas que ofrece este tipo de sistemas prediseñados es el uso de canales listón, los cuales son utilizados para apoyar los materiales de revestimiento y también proporcionar una ruptura en la trayectoria de flujo de calor hacia el...
exterior, lo que aumenta la eficiencia térmica. (Mayorga, Pérez, & Ramirez, 2014).

Figura 17. Módulos para residencias
Fuente: (Toribio, 2013)
3.2. Estado del Arte

3.2.2 Light Steel Framing en las regiones

Basados en Mayorga, Pérez y Ramírez (Mayorga, Perez, & Ramirez, 2014), se presenta a continuación el estado del arte del Light Steel Framing en las diferentes regiones del mundo:

Estados Unidos

Probablemente Estados Unidos es el país que presenta un mayor avance y así mismo una mayor cantidad de información acerca del sistema constructivo con Light Steel Framing. Este avance llega a tal punto que el Consejo Nacional de Examinadores de Ingeniería y Agrimensura (NCEES) decidió en 2009 incluir preguntas sobre la construcción con marcos ligeros en acero (LSF) en el examen que determina la acreditación profesional a los ingenieros de ese país, las cuales se incluyeron en el examen a partir de Abril de 2011. Lo anterior muestra que este sistema constructivo debe ser del conocimiento de todos los profesionales de ese país y por lo tanto están en la capacidad de llevar a cabo construcciones con el uso de este sistema. (American Iron and Steel Institute, 2009)

Según la Alianza de Marcos de Acero (Steel Framing Alliance), hay muchas razones por las que las estructuras de acero han llegado a la vanguardia como uno de los mejores y más viables materiales de construcción, convirtiéndose en una buena alternativa para la construcción residencial y comercial. Consideran adicionalmente que el acero en general es un material de construcción superior con muchos beneficios como los que se muestran a continuación:

Beneficios generales

- La mayoría de piezas de mediana altura, material estructural rentable.
- Programa de construcción más corto y predecible.
- Mayor relación resistencia-peso de cualquier material de construcción.
- 100% reciclable.
- Tasa de reciclaje de la industria del 68%.
- No combustible - no se quema ni contribuye a la propagación de un incendio.
• Inorgánico - no se pudre, deforma, divide o agrieta.
• Estabilidad dimensional - no se expande o contrae con el contenido de humedad.
• Consistente calidad del material - producido en estricta conformidad con las normas nacionales, sin variaciones regionales.

Beneficios para el constructor

• Importantes descuentos en los constructores.
• Más ligero que otros materiales de enmarcado.
• No es combustible.
• Fácil selección de materiales - no hay necesidad de sacrificar u ordenar la pila y la pequeña lista de verificación.
• Ahorra tiempo y espacio de trabajo con la facilidad de panelización fuera de las instalaciones.
• Paredes rectas y esquinas cuadradas.
• as ventanas y puertas se abren y cierran como deben.
• Menos de chatarra y residuos (2% para el acero frente a 20% para la madera).
• La estabilidad de precios.
• Consumidor percibe el acero como un mejor material.

Beneficios para el consumidor

• Alta resistencia, se traduce en estructuras más seguras, menos mantenimiento y con un lento proceso de envejecimiento.
• Seguridad de fuego - no se quema ni contribuye a la propagación de un incendio en las casas.
• No vulnerables a las termitas.
• No vulnerables a cualquier tipo de hongos u organismo.
• Menos probabilidad de problemas de cimentación-menos peso da lugar a un menor movimiento.
Menos probabilidad de daños en un terremoto.

• Estructura más ligera con fuertes conexiones, resultados en menos fuerza sísmica.

• Menos probabilidad de daño en los vientos fuertes.

• Conexiones más fuertes.

Por estas razones, entre muchas otras este sistema se ha vuelto pionero en la construcción en Estados Unidos donde desde hace ya bastante tiempo se buscaba remplazar el sistema con el que venían construyendo (Madera) pues presentaba varios problemas sobre todo a nivel ambiental. (Steel Framing Alliance, 2013)

Latinoamérica

La implementación del sistema LSF en Latinoamérica ha sido mucho menor que en Estados Unidos, porque esta comenzó hace relativamente poco tiempo y hasta ahora se está dando a conocer en todo el territorio Latinoamericano. En general, en Latinoamérica se cuenta con un manual para la construcción con acero liviano, el cual está basado en el “Standard for cold Steel Framing, prescriptive method for one or two family dwellings”, editado en el 2001 por el AISI de Estados Unidos. Sin embargo, se deja expresa constancia que las partes extraídas y/o traducidas de dicho Standard de ninguna manera implica responsabilidad alguna para AISI ni para ILAFA. Esta adaptación parcial solo representa la aplicación racional y el uso de información de primera fuente de la calidad tecnológica reconocida mundialmente a esas Instituciones en el desarrollo de este tipo de estructuras livianas de acero en beneficio de la calidad de la construcción metálica liviana (Instituto Latinoamericano del Fierro y del Acero, 2009). Es por esto que puede concluirse acerca del uso de Light Steel Framing en Latinoamérica que no se ha aplicado en una medida considerable pues no se tiene registros de uso o normas propias acorde a la situación económica, social o productora de cada país en cuanto a este tipo de implementaciones.

Australia

En Australia el uso del acero se ha dado desde hace más de 50 años, logrando que actualmente este sólidamente establecido en la construcción residencial y que se haya promovido el uso de
acero de calibre ligero. Sobre todo, después de la Segunda Guerra Mundial la escasez de materiales de construcción llevó al desarrollo de un sistema de ensamblaje de pared de acero llamado Econosteel, el cual presentaba las siguientes características:

- Secciones sin recubrimiento bañadas en pintura bituminosa
- Clavos y placas conectadas mediante lengüetas y ranuras
- Más de 300 casas construidas en la zona de Canberra en el momento

En la década de 1960 un constructor estadounidense construyó cerca de 50 casas en terrenos ganados al mar alrededor de la Gold Coast en Queensland, mediante el uso de marcos galvanizados fabricados de manera similar a la madera y acabados con estuco.

En 1968, la primera de las casas "nueva era" enmarcadas de acero fue construido en Thornleigh Sydney, la cual se caracterizó por:

- Marco hecho de 1,2 mm de espesor de acero galvanizado, anidado y soldado
- Formó la base de la mayoría de la construcción de viviendas con estructura de acero para los próximos 20 años
- Tuvo variaciones que fueron posteriormente desarrolladas.
- En la década de 1980 la disponibilidad de alta resistencia a la tracción de la aleación zinc-aluminio de acero recubierto alentó el desarrollo de nuevos sistemas.

Algunas de las variaciones que fueron desarrolladas con posterioridad fueron impulsadas por la tecnología informática que llegó detallando los marcos y haciendo control de procesos de fabricación de una forma más rápida y precisa. Adicionalmente, esta tecnología impulsó sistemas avanzados de unión con tornillos y clavos sujetadores de bajo costo que hicieron que la fabricación y la construcción con este sistema constructivo fuera más fácil, más barato y más fiable. (National Association of Steel framed housing, 2009).

Argentina

Los esfuerzos encontrados en Argentina encaminados a incorporar el sistema constructivo de light Steel Framing se han centrado en la capacitación principalmente realizada por el Instituto Argentino de Siderurgia y Tubos Argentinos para su Sistema Steelhouse.
El objetivo de los cursos dictados es conocer el sistema de perfiles de acero galvanizado liviano (Steel Framing), mediante la transferencia de conceptos que permiten tener un panorama global de todo el sistema, recorriendo cada uno de los subsistemas que lo integran. También proporciona los conocimientos teóricos y prácticos para aspirar a la certificación como Supervisor de Obra utilizando estructuras de acero galvanizado bajo el marco de la norma IRAM-IAS U200-248. (Construcción metálica en América Latina, 2007)

Canadá

Este país tiene también al igual que en Latinoamérica un manual para el uso adecuado del Light Steel Framing, emitido por el Instituto Steel Building (CSSBI).

En el mismo sentido, uno de los mandatos de la CSSBI es patrocinar la investigación sobre temas relacionados con el diseño de acero conformado en frío y aplicaciones. Los proyectos de investigación son financiados en diversas universidades de todo el Canadá. El Instituto también apoya el Grupo de Investigación canadiense en la Universidad de Waterloo de acero formado en frío.

China

La industria de la construcción en China está luchando con el problema de la producción de edificios de viviendas que la gente pueda utilizar para vivir. Costos de construcción reducidos y procesos de construcción más eficientes son en gran medida parte de los requerimientos que la industria constructiva busca en este país, junto con el sistema de seguridad de calidad mantenido o mejorado. El camino a seguir para estos objetivos es la adopción de procesos de construcción industrial con el aumento de la prefabricación. Por eso, el sistema de acero de calibre ligero a base de perfiles de edad formada, placas de yeso y lana mineral encaja muy bien en esta tendencia y se ha venido implementando en varias ciudades de este país de manera paulatina con el fin de evaluar los resultados que genere.
Luxemburgo

La participación de este país es mas a nivel de fabricación de Perfiles de acero liviano, y rollos de acero liviano para exportación. Esta industria se ha posicionado como pionera a nivel mundial por tener a una de las más grandes productoras, exportadora de este tipo de acero a más de 60 países, ArcelorMittal.

Japón

Este país ha implementado desde hace algún tiempo el sistema de casas Sekisui, que ha brindado la posibilidad de construir a un ritmo mucho más avanzado que el habitual mediante el uso de paneles prefabricados en acero liviano, a tal punto de construir el 80% de una casa en 3 días. Por esto este método se ha implementado satisfactoriamente en este país y se ha venido impulsando últimamente por las ventajas que presenta frente a los otros métodos que se implementan en el país.

Francia

Al igual que en Japón en Francia durante los últimos años se ha venido impulsando y desarrollando un sistema integral de construcción con LSF conocido como “Phenix Maison” el cual consiste en la construcción de manera rápida y masiva de varias casas con paneles en acero prefabricado así como todas las demás partes de la casa hechas con antelación y solo llevadas al sitio de la construcción para realizar el ensamble.
3.2.3 Centros de Investigación

Los centros de investigación y desarrollo son de vital importancia para el continuo mejoramiento y aprendizaje sobre el sistema.

Los principales y destacados, por la producción de normas, papers y ensayos son: National Association of Steel Framed Housing Inc. (NASH), ConsulSteel, Steel Framing Alliance, American Iron and Steel Institute y SSMA.

Estas entidades realizan ensayos para definir comportamiento dinámico y estático de la estructuras, cargas y deformaciones debido a incendios, comparación entre sistemas para definir espesores que minimicen la barrera de vapor y optimicen la estabilidad térmica, entre otros. (Mayorga, Perez, & Ramirez, 2014)

3.2.4 Normatividad

El aspecto normativo contempla los manuales, códigos y normas que son implementados en diferentes países del mundo.

En los manuales se presentan instructivos de instalación, donde se describen paso a paso como se deben realizar cada uno de las fases de construcción, esto incluye instalaciones hidráulicas, eléctricas y de gas.

En las normas se especifica los detalles de los elementos (requerimientos de materiales, dimensiones, corrosión, térmicos y acústicos), las especificaciones que estos deben cumplir para ser usados, se presentan guías de diseño, procesos de simulación, requerimientos y condiciones que debe tener el personal a cargo, condiciones de instalación y especificaciones de las conexiones. En la parte estructural, se especifican deflexión máximas, torsiones, tensiones y deformaciones. Los códigos térmicos, se especifica las características importantes para cada tipo de sección y los parámetros que son necesarios para realizar una evaluación termo acústica. Igualmente, se presentan reglamentos en los cuales la ley del país establece los elementos básicos que se deben seguir, reconocen y establecen las características del sistema. (Mayorga, Perez, & Ramirez, 2014)
A continuación, se presenta un cuadro con las principales normas empleadas en diferentes países.

Tabla 2. Normas técnicas acerca del LSF. Fuente: (Mayorga, Perez, & Ramirez, 2014)

<table>
<thead>
<tr>
<th>País</th>
<th>Normas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estados</td>
<td>AIS Codes, Standards and Design Guides on Cold-Formed Steel Framing (2007)</td>
</tr>
<tr>
<td></td>
<td>Thermal design and code compliance for cold-formed steel walls (2008)</td>
</tr>
<tr>
<td>UK</td>
<td>BS 5950 Part 5</td>
</tr>
<tr>
<td></td>
<td>"Code of Practice for Design of Cold Formed" (1998)</td>
</tr>
<tr>
<td>Japón</td>
<td>Technical standard notification No.1641 concerning light-gauge steel structures (2001)</td>
</tr>
<tr>
<td>Chile</td>
<td>Manual de Ingeniería de Steel Framing: Elementos estructurales, techos, paredes – Chile (2007)</td>
</tr>
<tr>
<td>Nueva Zelanda y Australia</td>
<td>Manuales publicados por NASH (National Association of Steel Framed Housing INC) (2005 - 2009)</td>
</tr>
</tbody>
</table>
3.2.5 Sostenibilidad

El acero se ha convertido rápidamente en uno de los materiales de construcción más eficiente energéticamente hablando, Entre los principios de 1990 y 2007, la industria en Estados Unidos redujo su consumo energético en un tercio.

Los edificios construidos en acero laminado en frío son probablemente los edición con mayor rendimiento y fueron construidos con la política “Energy Star” y cumplen a cabalidad los requisitos LEED y otros programas de construcción verde y normas.

Además, de todos los beneficios asociados a tener una edificación un certificación LEED, se realizó un estudio en el cual se compara todo el desarrollo de una obra de concreto con una en acero liviano, del cual se encontró que en la fase de construcción la emisión de gases y el gasto de energía es menor que en la construcción tradicional.

![Figura 18. Comparación de emisión de gases](image)

Fuente: (Guggemos Acree & Horvath, 2005).

De igual forma, se notó que en el transporte de materiales y producción de estos se requiere un mayor gasto energético, al igual que en el final de la vida útil de la estructura. Esto se debe a los procesos de manufactura o desmonte que generalmente con llevan mayor tiempo y costos. (Ver Figura 19) (Guggemos Acree & Horvath, 2005).
Figura 19. Comparación de energía usada en el ciclo de vida del proyecto

Fuente: (Guggemos Acree & Horvath, 2005).

En los proyectos light steel framing el porcentaje de desperdicio normalmente es destinado para reciclaje o reusó. El acero particularmente es uno de los materiales estructurales que más genera créditos LEED con respecto a reuso. Debido principalmente a el poco desperdicio que produce y su fácil reusó. (Steel Framing Alliance, 2008)

Los materiales utilizados en light steel framing contiene un alto grado de material reciclado. Regularmente los perfiles de acero conformados en frío aportan en gran forma a estos créditos LEED dado que su contenido de reciclaje es alto.
4. Metodología

La metodología utilizada en el presente proyecto investigativo consta de diferentes etapas las cuales se lograron los objetivos planteado en este proyecto y son mostrado a continuación:

1. Creación de Diseños: Con respecto a los diseños utilizados para el análisis comparativo en el cual se sustenta parte de este proyecto investigativo, se utilizo como base los diseños arquitectónicos y estructurales del proyecto Torcaza de la empresa Prodesa SA, permitiendo de este modo y de manera especializada obtener unos diseño estructurales para el light steel framing con ayuda de profesionales especializados.

2. Construcción de estructuras de costos: A partir de las cantidades tomadas de los diseños y de un estudio de precios de mercado tanto de mano obra como materiales de obra se crearon estructuras de costos directos para ambos sistemas constructivos.

3. Estimación duraciones de obra: Basados en rendimientos de obra de diferentes fuentes encontrados en la literatura e investigando en empresas de construcción, así como en un estimativo de las relaciones de cada actividad de obra, se estimaron las duraciones de obra de cada sistema constructivo.

4. Estimación costos indirectos: Teniendo como base los costos indirectos de obra investigados, se creo un estimativo de dichos costos para cada sistema constructivos, estos costos van relacionado con la duración de la obra.

5. Análisis Financiero: Basado en todos los resultados obtenidos de costos, duraciones y bajo un estimativo o proyección de ventas, se creo un flujo de caja de los proyectos en ambos sistemas, teniendo en cuenta otros costos asociados como los financieros, y de promoción y ventas. Adicionalmente, se crearon análisis verticales en donde se especifican las utilidades proyectadas de cada proyecto para poder realizar un análisis.

6. Análisis de masificación del sistema: En el desarrollo del análisis cuantitativo, se encontraron las principales limitaciones de producción del sistema, por tanto se continuo con un análisis cuantitativo de los beneficios que podría traer una masificación de este sistema.
7. **Análisis normativo:** Se analizó el marco normativo que en Colombia abarca el sistema Light Steel Framing encontrando las falencias normativas y exponiendo recomendaciones en este aspecto.

8. **Conclusiones:** Con todos los resultados obtenidos se presentan conclusiones y recomendaciones del proyecto investigativo.
5. Aportación al Conocimiento Científico

Con el fin de encontrar unos resultados que puedan representar si el sistema Light Steel Framing es competitivo y viable en Colombia se realizó un análisis comparativo con respecto a uno de los principales sistemas de construcción de vivienda como lo es la mampostería estructural, para esto se tomó un proyecto construido en Colombia bajo dicho sistema, y se creo con las mismas características arquitectónicas, diseños estructurales en LSF los cuales permitieron el posterior análisis comparativo.

5.1. Características proyecto.

El análisis comparativo realizado en este proyecto de investigación se encuentran basado en el proyecto TORCAZA construido por la empresa constructora PRODESA S.A, este proyecto hace parte de un mega proyecto llamado cuidad sabana ubicado en el municipio de Mosquera, Cundinamarca.

El proyecto en su concepción consta de dos etapas, una inicial de 96 viviendas y una segunda etapa de 116 viviendas, para un total de 214 viviendas las cuales tienen características para venta en precio tope VIS, es decir, que su precio de venta son 133 SMMLV. El área de la casa es de 76.6 m², basados en la arquitectura y diseños de estas casas se creo un modulo de 8 viviendas el cual será el objetivo de comparación de este proyecto.

A partir de este proyecto se muestra a continuación el diseño arquitectónico de las casas y su respectivo diseño estructural en mampostería estructural y Light Steel Framing.
5.2. Diseño Arquitectónico Casas

El proyecto se encuentra distribuidos por módulos de casas en donde se encuentran dos tipos de casas; esquineras y medianeras, teniendo como característica que las casas medianeras comparten muros entre si logrando una reducción de costos considerables en la estructura de las casas.

Las casas del proyecto *TORCAZA* constan de tres niveles y con una cubierta a una sola agua. A continuación mostramos las diferentes plantas y cortes donde se puede observar las características arquitectónicas del proyecto.

En la Figura 20, encontramos la planta típica de las casas, donde se puede observar que son unas casas rectangulares uniformes con unas dimensiones de 3.5 m de Ancho por 10.06 m de largo, con un patio interno de 1.94 m de largo.

Figura 20. Planta Casas TORCAZA

Fuente: (Prodesa, 2010)
En la Figura 21 encontramos el corte vertical de la arquitectura de las casas de TORCAZA, en donde se puede observar que la altura en entrepisos es de 2.3 m, solo en el nivel tres tenemos mayores alturas para lograr el desnivel de la cubierta como se observa en la Figura 22
Figura 22. Corte transversal
Fuente: (Prodesa)

Todos los cortes y plantas mostrados permitieron obtener las cantidades necesarias para poder presupuestar os costos y realizar unas programación de obra.
5.3 Diseños Estructurales

Los diseños estructurales que se pretenden comparar son como se ha mencionado anteriormente la Mampostería Estructural y el LSF. Ambos diseños están basados en los diseños arquitectónicos anteriormente presentados y en el Anexo 1. Estudios de Suelos. El cual fue suministrado por la empresa PRODESA S.A para uso en este proyecto; permitiendo así que ambos diseñados estén basados en los mismos parámetros para poder llegar a un estudio comparativo equilibrado.

5.3.1 Mampostería Estructural Parcialmente Reforzada.

Los diseños estructurales utilizados para el análisis de este proyecto investigativo fueron suministrados por la empresa PRODESA para la construcción de estas casas se usaron muros parcialmente reforzado, el sistema de entrepiso consta de placas alveolares las cuales son prefabricadas y fundidas en obra con refuerzos entre ellas para conservar la interacción. Todos estos detalles estructurales se describen a continuación. Adicionalmente en el Anexo 2 y Anexo 3 presentan en detalle los planos estructurales y la memoria de cálculo.

Figura 23. Plano Cimentación, y Muros Planta 1 (Fuente: Prodesa)
En la Figura 23 encontramos el diseño de la cimentación para los dos tipos de casa que se encuentran en el proyecto la casa esquinera y la casa medianera. La cimentación está conformada por vigas de dimensiones variables (ver Figura 24) las cuales reciben las cargas que vienen transmitidas por los muros, los cuales también se encuentran en esta figura. Las vigas de cimentación cuentan con diferentes tipos de dimensiones para las vigas de muros compartido, vigas de para los puntos fijo y demás vigas.
En la Figura 25 se encuentra la localización de los muros y de las celdas de refuerzo en planta, como se puede observar el área de patio no contiene muros estructurales. Los muros entre casas son compartidos esta característica ayuda significativamente en la reducción de costos de el proyecto. Por otro lado, En la Figura 26 tenemos el plano estructural de la segunda planta de la casa en este se aprecian la disposición de las placas de entrepiso, las cuales como se menciono son unas placas alveolares de ancho y dimensiones en planta variables, al igual se muestra la disposición de los muros y las vigas para los puntos fijos.

Figura 26. Planta Estructural Nivel 2 Mampostería (Fuente: Prodesa)

En la Figura 27 Se presenta la planta estructural del nivel 3, conservando las mismas características en dimensiones que el nivel 2. Nuevamente se puede observar la distribución de las placas alveolares y el punto fijo de las escaleras.
Por último, en la Figura 28 se presenta el plano de la cubierta, donde se encuentra como principal elemento estructural las vigas correas las cuales tienen dimensiones variable.
5.3.2 Light Steel Framing

El diseño estructural LSF se realizó basado en la NSR-10 y la AISI 100-2007, para el dimensionamiento de los elementos estructurales se utilizó el Capítulo 4 del título F de la NSR-10, en donde se encuentra las normas para los elementos estructurales en acero formado en frío. En el Anexo 4 se encuentra el diseño estructural para las casas en LSF, allí encontramos también la memoria del cálculo estructural reportada por SAP 2000; de igual forma, en el Anexo 5 encontramos el diseño de cimentación para encontrar las diferencia con la estructura de cimientos del sistema estructural tradicional a comparar dado que al ser LSF mas ligeros las cargas sobre la cimentación se reduce; lo que podría significar un ahorro en costos. A continuación se muestra un resumen de los diseños en LSF sobre los cuales se realizaran los posteriores análisis.

Figura 29. Dimensiones Cimentación tipo Light Steel Framing.

En este caso el peso utilizado 360 Kg/m² un peso que se encuentra referenciado por las empresas que manejan el diseño del LSF. Como se puede observar en el diseño se obtuvieron vigas de 0,25 m x 0,25 m lo que representa una reducción en las dimensiones de la vigas y por consiguiente un reducción en el costos de la cimentación. Obteniendo así un dimensionamiento como se observa en la Figura 29
El diseño se realizó para un módulo de casas continuas con muros compartidos las cuales guardan las mismas características del diseño en mampostería estructural esto con el fin de tener modelos idénticos.

Se obtuvo así que los muros compartidos de el primer nivel son construidos con perfiles S894116 (parales) cada 407 mm a partir de acero grado 33. El resto de muros del primer nivel se utilizan parales de perfiles S894118 cada 407 mm de acero grado 33. Para los muros de los dos niveles superiores la conformación de los muros es uniforme con parales de perfiles S894118 cada 407 mm.
Los entrepisos están conformados por perfiles dobles S1504118 con un espaciamiento de 407 mm acero grado 33, mientras que la cubierta se tienen viguetas con perfiles S1504116 con un espaciamiento de 850 mm.

Basados en el diseño estructural obtenido para las casas tipo Torcaza, para el sistema constructivo Light Steel Framing. En la Tabla 3 se muestra el análisis de peso total de la estructura, incluyendo las cubierta y escalera metálica. Así mismo se estima el peso de estructura por metros cuadrado construido(Kg/m2), basado en el valor de 692 m2 construidos para las 8 casas, como se menciono anteriormente.

Tabla 3. Peso total Estructura Metálica LSF. (Fuente: Elaboración Propia)

<table>
<thead>
<tr>
<th>DESCRIPCION</th>
<th>PERFIL</th>
<th>PERFIL ML</th>
<th>PESO KG/ML</th>
<th>PESO TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUROS PRIMER PISO</td>
<td>s894116</td>
<td>493</td>
<td>2.14</td>
<td>1055.02</td>
</tr>
<tr>
<td>MUROS PRIMER PISO</td>
<td>s894118</td>
<td>2486</td>
<td>1.71</td>
<td>4251.06</td>
</tr>
<tr>
<td>REFUERZOS PRIMER PISO</td>
<td>s894116</td>
<td>39.44</td>
<td>2.14</td>
<td>84.4016</td>
</tr>
<tr>
<td>MUROS SEGUNDO PISO</td>
<td>s894118</td>
<td>2474</td>
<td>1.71</td>
<td>4230.54</td>
</tr>
<tr>
<td>REFUERZOS SEGUNDO</td>
<td>s894118</td>
<td>197.92</td>
<td>1.71</td>
<td>336.4432</td>
</tr>
</tbody>
</table>
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.

Jose Luis Lamus R. - 200914262

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>PERFIL</th>
<th>PERFIL ML</th>
<th>PESO KG/ML</th>
<th>PESO TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PISO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUROS TERCER PISO</td>
<td>s894118</td>
<td>2719</td>
<td>1.71</td>
<td>4649.49</td>
</tr>
<tr>
<td>REFUERZOS TERCER PISO</td>
<td>s894118</td>
<td>217.52</td>
<td>1.71</td>
<td>371.9592</td>
</tr>
<tr>
<td>ENTREPISO 2DO PISO</td>
<td>S1504118</td>
<td>1296</td>
<td>2.39</td>
<td>3097.44</td>
</tr>
<tr>
<td>REFUERZOS ENTREPISO 2</td>
<td>S1504118</td>
<td>103.68</td>
<td>2.39</td>
<td>247.7952</td>
</tr>
<tr>
<td>ENTREPISO TERCER PISO</td>
<td>S1504118</td>
<td>1296</td>
<td>2.39</td>
<td>3097.44</td>
</tr>
<tr>
<td>REFUERZOS ENTREPISO 3</td>
<td>S1504118</td>
<td>103.68</td>
<td>2.39</td>
<td>247.7952</td>
</tr>
<tr>
<td>CUBIERTA</td>
<td>s894116</td>
<td>300</td>
<td>2.14</td>
<td>642</td>
</tr>
<tr>
<td>REFUERZOS CUBIERTA</td>
<td>s894116</td>
<td>24</td>
<td>2.14</td>
<td>51.36</td>
</tr>
<tr>
<td>ESCALERA 1 A 2DO PISO</td>
<td>s894120</td>
<td>575</td>
<td>1.21</td>
<td>695.75</td>
</tr>
<tr>
<td>ESCALERA 2 A 3ER PISO</td>
<td>s894120</td>
<td>575</td>
<td>1.21</td>
<td>695.75</td>
</tr>
</tbody>
</table>

TOTAL PESO ESTRUCTURA (KG): 23756.2

TOTAL PESO ESTRUCTURA (KG/M2): 34.33

Como resultado se obtuvo que la estructura para las 8 casas tiene un peso estimado de 24.6 toneladas de acero. Y se obtuvo un peso total por metro cuadrado construido de 34 Kg/m². si lo comparamos con los rangos mencionado en el Dossier informativo sobre Light Steel Framing de la empresa consultora RATIO:N:ING. (S.L., 2010). El cual presenta valores de entre 24 y 30 Kg acero / m² edificación. Este rango es obtenido por la empresa mencionada dada su participación en numerosos proyectos de Steel Framing en España. Concluyendo así, que el peso de nuestra estructura estaría muy cercanos a los rango encontrados en la literatura. Mas adelante se mostraran las consideraciones necesarias que se deben tener para poder tener una reducción notable en el peso de la estructura.

1 **RATIO:N:ING** es una empresa de ingeniería española que participa en proyectos light steel framing en España por medio de Diseño y cálculo la estructura Steel Framing, Redacción del proyecto de estructuras y delineación planos de fabricación y montaje, Suministro de la estructura metálica, Asistencia técnica integral y formación a durante el ensamblaje de paneles en taller y su instalación en obra.
6. Presentación y Discusión de Resultados

Basados en los diseños anteriormente presentados, se procedió a realizar el análisis comparativo entre la casa tipo “Torcaza” construida con light steel framing como parte de este proyecto investigativo. Por tanto, se realizó un análisis en Costos Directos, Costos Indirectos, Duración de Obra, y Modelación Financiera.

Preliminar al análisis es preciso señalar las condiciones y características que se van a comparar, por tanto en la Tabla 4 se presentan dichas características sobre las cuales se llevará acabo el análisis comparativo. Así mismo, se presentan unos cortes en donde se pueden apreciar los detalles principales de las estructuras a comparar.

<table>
<thead>
<tr>
<th>Tabla 4. Condiciones y Características de Análisis Comparativo – Fuente: (Elaboración Propia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIGHT STEEL FRAMING</td>
</tr>
<tr>
<td>Cimentación</td>
</tr>
<tr>
<td>Vigas de Cimentación + placa de contra piso.</td>
</tr>
<tr>
<td>Estructura</td>
</tr>
<tr>
<td>Paneles portantes en perfiles de acero galvanizado Liviano</td>
</tr>
<tr>
<td>Estructura Entrepisos</td>
</tr>
<tr>
<td>Paneles portantes en perfiles de acero galvanizado Liviano</td>
</tr>
</tbody>
</table>
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.
Jose Luis Lamus R. - 200914262

<table>
<thead>
<tr>
<th>LIGHT STEEL FRAMING</th>
<th>MAMPOSTERIA ESTRUCTURAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubierta</td>
<td></td>
</tr>
<tr>
<td>Paneles portantes en perfiles de acero galvanizado Liviano + tejas de fibrocemento</td>
<td>Perfiles No. 100</td>
</tr>
<tr>
<td>Muros Exteriores</td>
<td></td>
</tr>
<tr>
<td>Placa de Fibroemento 10 mm + estuco + pintura exteriores</td>
<td>Muro en bloque Estructura + pañete + estuco + Pintura Exteriores</td>
</tr>
<tr>
<td>Muros Interiores</td>
<td></td>
</tr>
<tr>
<td>Panel de Acero Galvanizado + Placa de yeso 12.5 mm + Masilla + Pintura</td>
<td>Muro en bloque Estructura + pañete + estuco + Pintura</td>
</tr>
<tr>
<td>Cielo Raso</td>
<td></td>
</tr>
<tr>
<td>Placa de Yeso 12.5 mm + Masilla + Pintura Tipo Vinilo</td>
<td>Yeso Aplicado + Pintura Tipo vinilo</td>
</tr>
<tr>
<td>Acabados entrepisos</td>
<td></td>
</tr>
<tr>
<td>Lamina de Fibrocemento 17 mm</td>
<td>Plantilla sobre placa</td>
</tr>
</tbody>
</table>

A continuación se presentan los cortes en donde se representa gráficamente la información suministrada en la Tabla 3. En ese orden en la Figura 32, y Figura 33 encontramos el corte para los muros exteriores e interiores del light Steel Framing donde podemos observar dimensiones y características.

Figura 32. Corte Muros Interiores LSF (Fuente: Elaboración Propia)

Figura 33. Corte Muros Exteriores LSF (Fuente: Elaboración Propia)
Los muros en el sistema light Steel Framing están compuestos por perfiles galvanizados S8941 los cuales tienen un ancho de 89 mm. Para muros interiores los revestimientos en ambas caras son de laminas de yeso cartón de espesor de 12.5 mm y un acabado final de aproximadamente 15 mm resultando un espesor de muro estimado de 144 mm. Mientras tanto, los muros exteriores o de fachada, tienen en su cara interna un revestimiento de lamina de yeso cartón de espesor de 12 mm, en su cara externa tiene un revestimiento en laminas de fibrocemento con espesor de 10 mm, con una acabado en cada cara de 15 mm aproximadamente, obteniendo así un ancho de muro estimado de 141.5 mm.

Los muros en la mampostería estructural cuentan con bloques con espesor de 120 mm y en tanto muros internos como muros externos el acabado en caras internas y externas es de aproximadamente 25 mm lo que incluye pañetes, estuco y pintura. Obteniendo así un ancho de muros de 170 mm.
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.
Jose Luis Lamus R. - 200914262

En la Figura 36 encontramos el corte del entrepiso en Light Steel Framing se observa que esta compuesto por perfiles estructurales de acero galvanizado tipo S15041 que tienen un ancho de 150 mm, adicionalmente en su cara superior tiene un revestimiento en laminas de fibrocemento con un espesor de 17 mm, y por debajo esta revestido por laminas de yeso cartón de 12.5 mm que componen el cielo raso.

Figura 37. Entrepiso Mampostería Estructural
Fuente: (Elaboración Propia)

Por ultimo, se presentan el entrepiso del sistema en mampostería estructural, el cual esta conformado por una placa alveolar de concreto con un espesor de 100mm y un acabado bajo la placa de 20 mm de espesor aproximadamente.

Es importante revisar que los niveles de acabados en light steel framing son superiores a una mampostería común sin acabados arquitectónicos es por tanto que para este análisis y como se encuentra en la Tabla 4, fue necesario llevar los acabados a un mismo nivel con el fin de obtener un análisis comparativo equilibrado.

Adicionalmente, al análisis comparativo se estudio las limitaciones que el sistema constructivo light Steel Framing tiene en Colombia, y que podría llevar a que este sistema se vuelva mas competitivo en el país. Este análisis contempla aspectos del diseño estructural y de las ventajas de la masificación de este sistema.
6.1 Costos Directos

Basados en las características enunciadas en la Tabla 4 se procedió a realizar los análisis de los costos directos de construcción para cada sistema estructural, analizando los capítulos de Cimentación, Estructura, Revestimientos/Acabados y Cubierta. Las estructuras completas de presupuestos de costos directos son presentadas en el Anexo 6 para el sistema Light Steel Framing y Anexo 7 para la mampostería estructural.

Como primer requisito se realizó un análisis de costos mano de obra para el año 2015, para esto se analizó el costo del día de cada tipo de trabajador incluyendo todas las prestaciones, parafiscales y sistema integral de seguridad social. El resultado de este análisis se encuentra en la Tabla 5. Así mismo, en la Tabla 6, se presentan las cuadrillas a utilizar durante la creación de los presupuestos de costos directos de cada sistema constructivo.

A continuación se presenta el análisis de presupuesto que se realizó por cada capítulo a comparar entre el sistema Light Steel Framing y la mampostería Estructural.
Tabla 5. Análisis de Salarios Mano de Obra – Fuente (Elaboración Propia)

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Cargo</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oficial de Estructuras</td>
<td>60</td>
<td>00</td>
<td>2,467</td>
<td>62,467</td>
<td>5,206</td>
<td>2,603</td>
<td>5,831</td>
<td>13,640</td>
<td>76,107</td>
<td>2,500</td>
<td>2,400 1,800 1,200 447</td>
<td>5,847</td>
<td>16,947</td>
<td>100,930</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ayudante de Estructuras</td>
<td>35</td>
<td>00</td>
<td>2,467</td>
<td>37,467</td>
<td>3,122</td>
<td>1,561</td>
<td>3,497</td>
<td>8,180</td>
<td>45,647</td>
<td>2,500</td>
<td>1,400 1,050 700 447</td>
<td>3,597</td>
<td>9,611</td>
<td>61,355</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Oficial Acabados</td>
<td>50</td>
<td>00</td>
<td>2,467</td>
<td>52,467</td>
<td>4,372</td>
<td>2,186</td>
<td>4,897</td>
<td>11,455</td>
<td>63,922</td>
<td>2,500</td>
<td>2,000 1,500 1,000 447</td>
<td>4,947</td>
<td>13,730</td>
<td>85,099</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Ayudante Acabados</td>
<td>30</td>
<td>00</td>
<td>2,467</td>
<td>32,467</td>
<td>2,706</td>
<td>1,353</td>
<td>3,031</td>
<td>7,090</td>
<td>39,557</td>
<td>2,500</td>
<td>1,200 900 600 447</td>
<td>3,147</td>
<td>8,238</td>
<td>53,442</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Oficial Obra Negra</td>
<td>55</td>
<td>00</td>
<td>2,467</td>
<td>57,467</td>
<td>4,789</td>
<td>2,395</td>
<td>5,364</td>
<td>12,548</td>
<td>70,015</td>
<td>2,500</td>
<td>2,200 1,650 1,100 447</td>
<td>5,397</td>
<td>15,103</td>
<td>93,015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Ayudante Obra Negra</td>
<td>35</td>
<td>00</td>
<td>2,467</td>
<td>37,467</td>
<td>3,122</td>
<td>1,561</td>
<td>3,497</td>
<td>8,180</td>
<td>45,647</td>
<td>2,500</td>
<td>1,400 1,050 700 447</td>
<td>3,597</td>
<td>9,611</td>
<td>61,355</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabla 6. Cuadrillas para Análisis de Precios – Fuente: (Elaboración Propia)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CUADRILLA</th>
<th>INTEGRANTES</th>
<th>CANTIDAD</th>
<th>SALARIO DIARIO</th>
<th>SALARIO PARCIAL</th>
<th>SALARIO CUADRILLA</th>
<th>HORA CUADRILLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cuadrilla de Estructura Tipo 1</td>
<td>Oficial de Estructuras</td>
<td>1</td>
<td>100,930</td>
<td>100,930</td>
<td>162,285</td>
<td>$ 20,286</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ayudante de Estructuras</td>
<td>1</td>
<td>61,355</td>
<td>61,355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cuadrilla de Estructura Tipo 2</td>
<td>Oficial de Estructuras</td>
<td>2</td>
<td>100,930</td>
<td>201,860</td>
<td>324,570</td>
<td>$ 40,571</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ayudante de Estructuras</td>
<td>2</td>
<td>61,355</td>
<td>122,710</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Cuadrilla de Estructura Tipo 3</td>
<td>Oficial de Estructuras</td>
<td>1</td>
<td>100,930</td>
<td>100,930</td>
<td>284,995</td>
<td>$ 35,624</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ayudante de Estructuras</td>
<td>3</td>
<td>61,355</td>
<td>184,065</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cuadrilla de Obra Negra Tipo 1</td>
<td>Oficial de Obra Negra</td>
<td>1</td>
<td>93,015</td>
<td>93,015</td>
<td>154,370</td>
<td>$ 19,296</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ayudante de Obra Negra</td>
<td>1</td>
<td>61,355</td>
<td>61,355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Cuadrilla de Acabados Tipo 1</td>
<td>Oficial de Obra Negra</td>
<td>1</td>
<td>93,015</td>
<td>93,015</td>
<td>154,370</td>
<td>$ 19,296</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ayudante de Obra Negra</td>
<td>1</td>
<td>61,355</td>
<td>61,355</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.1.1 Cimentación

Dado que el sistema Light Steel Framing cuenta entre sus características por tener un menor peso propio, se pretende realizar una comparación de los sistemas de cimentación a utilizar en ambos casos.

Teniendo en cuenta los resultados de los diseños de cimentación mencionados con anterioridad se procedió a realizar un análisis de costos directos para cada uno de los sistemas estructurales. A continuación, se muestran los valores usados para los materiales e insumos en el análisis de precios de la cimentación en ambos sistemas estructurales.

Tabla 7. Costos de Materiales - Cimentación

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>UNIDAD</th>
<th>VALOR UNITARIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concreto Grava Común 3000</td>
<td>m3</td>
<td>$313,316</td>
</tr>
<tr>
<td>Concreto Grava Común 2000</td>
<td>m3</td>
<td>$272,584</td>
</tr>
<tr>
<td>Acero Refuerzo Figurado 60.000</td>
<td>Kg</td>
<td>$1,691</td>
</tr>
<tr>
<td>Alambre Negro Cal 18</td>
<td>Kg</td>
<td>$2,255</td>
</tr>
</tbody>
</table>

A continuación se muestran las cantidades y análisis de precios unitarios para cada ítem de la cimentación.
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.
Jose Luis Lamus R. - 200914262

- Light Steel Framing

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPCIÓN</th>
<th>UNIDAD DE MEDIDA</th>
<th>CANTIDADES</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>CIMENTACION</td>
<td></td>
<td></td>
<td></td>
<td>$21,094,931</td>
</tr>
<tr>
<td>2.1</td>
<td>VIGAS ZAPATAS</td>
<td></td>
<td></td>
<td></td>
<td>$12,076,716</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Viga Amarre 0.25 x 0.25 m</td>
<td>m</td>
<td>269.64</td>
<td>$31,354</td>
<td>$8,687,775</td>
</tr>
<tr>
<td></td>
<td>Concreto Grava Común 3000</td>
<td>m3</td>
<td>16.85</td>
<td>$313,316</td>
<td>$5,279,375</td>
</tr>
<tr>
<td></td>
<td>Vibrador Concreto Eléctrico</td>
<td>Hr</td>
<td>182.75</td>
<td>$2,000</td>
<td>$365,500</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Estructura 1-1</td>
<td>Hc</td>
<td>150.00</td>
<td>$20,286</td>
<td>$3,042,900</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Acero Refuerzo Vigas Amarre</td>
<td>kg</td>
<td>1918.00</td>
<td>$1,767</td>
<td>$3,388,942</td>
</tr>
<tr>
<td></td>
<td>Acero Refuerzo Figurado 60.000</td>
<td>Kg</td>
<td>1918.00</td>
<td>$1,691</td>
<td>$3,243,875</td>
</tr>
<tr>
<td></td>
<td>Alambre Negro Cal 18</td>
<td>Kg</td>
<td>64.33</td>
<td>$2,255</td>
<td>$145,067</td>
</tr>
<tr>
<td>2.2</td>
<td>PLACAS MACIZAS</td>
<td></td>
<td></td>
<td></td>
<td>$9,018,215</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Placa Contra piso Concreto 2000 e: 6cm</td>
<td>m2</td>
<td>278.76</td>
<td>$30,021</td>
<td>$9,018,215</td>
</tr>
<tr>
<td></td>
<td>Concreto Grava Común 2000</td>
<td>m3</td>
<td>17.56</td>
<td>$272,584</td>
<td>$4,786,358</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Estructura 1-3</td>
<td>Hc</td>
<td>118.79</td>
<td>$35,624</td>
<td>$4,231,857</td>
</tr>
</tbody>
</table>

Se observa que la cimentación en el sistema light steel framing tiene un valor parcial de **$21,094,931** para el modulo de ocho casas evaluado.
Mampostería Estructural

Tabla 9. Análisis de presupuesto Cimentación Mampostería (Fuente: Elaboración Propia)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPCIÓN</th>
<th>UNIDAD DE MEDIDA</th>
<th>CANTIDADES</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EXCAVACIONES Y RELLENO</td>
<td></td>
<td></td>
<td></td>
<td>$977,445</td>
</tr>
<tr>
<td></td>
<td>EXCAVACIONES</td>
<td></td>
<td></td>
<td></td>
<td>$977,445</td>
</tr>
<tr>
<td>1.1</td>
<td>Excavación Manual de Vigas</td>
<td>m</td>
<td>269.64</td>
<td>$3,625</td>
<td>$977,445</td>
</tr>
<tr>
<td></td>
<td>Ayudante Obra Negra</td>
<td>Hr</td>
<td>132.32</td>
<td>$7,387</td>
<td>$977,448</td>
</tr>
<tr>
<td>2</td>
<td>CIMENTACION</td>
<td></td>
<td></td>
<td></td>
<td>$24,837,992</td>
</tr>
<tr>
<td></td>
<td>VIGAS ZAPATAS</td>
<td></td>
<td></td>
<td></td>
<td>$15,819,777</td>
</tr>
<tr>
<td>2.1</td>
<td>Viga Amarre dimensiones Variable</td>
<td>m</td>
<td>269.64</td>
<td>$34,138</td>
<td>$12,090,798</td>
</tr>
<tr>
<td></td>
<td>Concreto Grava Común 3000</td>
<td>m3</td>
<td>23.80</td>
<td>$313,316</td>
<td>$7,456,921</td>
</tr>
<tr>
<td></td>
<td>Vibrador Concreto Eléctrico</td>
<td>Hr</td>
<td>182.75</td>
<td>$2,000</td>
<td>$365,500</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Estructura 1-1</td>
<td>Hc</td>
<td>210.41</td>
<td>$20,286</td>
<td>$4,268,377</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Acero Refuerzo Vigas Amarre</td>
<td>kg</td>
<td>1960.00</td>
<td>$1,903</td>
<td>$3,728,979</td>
</tr>
<tr>
<td></td>
<td>Acero Refuerzo Figurado 60.000</td>
<td>Kg</td>
<td>1691.28</td>
<td>$2,941</td>
<td>$4,974,071</td>
</tr>
<tr>
<td></td>
<td>Alambre Negro Cal 18</td>
<td>Kg</td>
<td>2255.04</td>
<td>$88</td>
<td>$198,963</td>
</tr>
<tr>
<td>2.2</td>
<td>PLACAS MACIZAS</td>
<td></td>
<td></td>
<td></td>
<td>$9,018,215</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Placa Contra piso Concreto 2000 e: 6cm</td>
<td>m2</td>
<td>278.76</td>
<td>$32,351</td>
<td>$9,018,215</td>
</tr>
<tr>
<td></td>
<td>Concreto Grava Común 2000</td>
<td>m3</td>
<td>17.56</td>
<td>$272,584</td>
<td>$4,786,358</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Estructura 1-3</td>
<td>Hc</td>
<td>118.79</td>
<td>$35,624</td>
<td>$4,231,857</td>
</tr>
</tbody>
</table>

Se observa que la cimentación en el sistema mampostería estructural tiene un valor parcial de $24,837,992 para el modulo de ocho casas evaluado.
6.1.2 Estructura.

La estructura de cada sistema constructivo tiene diferentes componentes a presupuestar, los cuales son explicados a continuación:

- Light Steel Framing.

En el sistema LSF la perferería estructural representa el mayor porcentaje de los costos directos, además se tienen otros componentes como tornillerías, anclajes los cuales no representan un gran impacto sobre el costo del presupuesto, sin embargo son tenidos en cuenta en el análisis.

Basados en la lista de precios de Matecsa S.A. (Matecsa S.A, 2013) se obtuvieron los siguientes costos de los perfiles de nuestro proyecto.

Tabla 10. Costos Materiales Estructura LSF - Fuente: (Matecsa S.A, 2013)

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>UNIDAD</th>
<th>VALOR UNITARIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfiles S894116</td>
<td>ml</td>
<td>$9,031</td>
</tr>
<tr>
<td>Perfiles S894118</td>
<td>ml</td>
<td>$7,225</td>
</tr>
<tr>
<td>Perfiles S894120</td>
<td>ml</td>
<td>$5,315</td>
</tr>
<tr>
<td>Perfiles S1504118</td>
<td>ml</td>
<td>$9,633</td>
</tr>
</tbody>
</table>

Teniendo en cuenta estos valores y las cantidades que se obtuvieron del diseño realizado por medio del software PinnacleCAD y validados en SAP. (Anexo 4. Diseños Estructurales Light Steel Framing) dichas cantidades son presentadas a continuación:

Tabla 11. Cantidades Estructura LSF

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>PERFIL</th>
<th>PERFIL ML</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muros primer piso</td>
<td>s894116</td>
<td>493</td>
</tr>
<tr>
<td>Muros primer piso</td>
<td>s894118</td>
<td>2486</td>
</tr>
</tbody>
</table>
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.

Jose Luis Lamus R. - 200914262

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>PERFIL</th>
<th>PERFIL ML</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refuerzos primer piso</td>
<td>s894116</td>
<td>39.44</td>
</tr>
<tr>
<td>muros segundo piso</td>
<td>s894118</td>
<td>2474</td>
</tr>
<tr>
<td>refuerzos segundo piso</td>
<td>s894118</td>
<td>197.92</td>
</tr>
<tr>
<td>Muros tercer piso</td>
<td>s894118</td>
<td>2719</td>
</tr>
<tr>
<td>Refuerzos tercer piso</td>
<td>s894118</td>
<td>217.52</td>
</tr>
<tr>
<td>Entrepiso 2do piso</td>
<td>S1504118</td>
<td>1296</td>
</tr>
<tr>
<td>Refuerzos entrepiso 2</td>
<td>S1504118</td>
<td>103.68</td>
</tr>
<tr>
<td>Entrepiso tercer piso</td>
<td>S1504118</td>
<td>1296</td>
</tr>
<tr>
<td>Refuerzos entrepiso 3</td>
<td>S1504118</td>
<td>103.68</td>
</tr>
<tr>
<td>Cubierta</td>
<td>s894116</td>
<td>300</td>
</tr>
<tr>
<td>Refuerzos cubierta</td>
<td>s894116</td>
<td>24</td>
</tr>
<tr>
<td>Escalera 1 a 2do piso</td>
<td>s894120</td>
<td>575</td>
</tr>
<tr>
<td>Escalera 2 a 3er piso</td>
<td>s894120</td>
<td>575</td>
</tr>
</tbody>
</table>

Basado en esto se crearon unos análisis de precios unitarios para la estructura de las casas en el sistema LSF. A continuación se muestra este análisis.

Tabla 12. Costos Directos Capítulo Estructura LSF (Fuente: Elaboración Propia)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPCIÓN</th>
<th>UNIDAD DE MEDIDA</th>
<th>CANTIDADES</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ESTRUCTURA</td>
<td></td>
<td></td>
<td></td>
<td>$136,338,461</td>
</tr>
<tr>
<td>3.1</td>
<td>ENTREPIPOS</td>
<td></td>
<td></td>
<td></td>
<td>$35,983,783</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Entrepiso Perfiles S1504118</td>
<td>m2</td>
<td>387.63</td>
<td>$92,830</td>
<td>$35,983,783</td>
</tr>
<tr>
<td></td>
<td>Perfiles S1504118</td>
<td>ml</td>
<td>2592.00</td>
<td>$9,633</td>
<td>$24,969,576</td>
</tr>
<tr>
<td></td>
<td>Refuerzo de Entrepiso Perfiles S1504118</td>
<td>ml</td>
<td>207.36</td>
<td>$9,633</td>
<td>$1,997,566</td>
</tr>
<tr>
<td></td>
<td>Conexiones</td>
<td>%</td>
<td>0.09</td>
<td>$24,969,576</td>
<td>$2,157,372</td>
</tr>
</tbody>
</table>
ITEM | **DESCRIPCIÓN** | **UNIDAD DE MEDIDA** | **CANTIDADES** | **VALOR UNITARIO** | **VALOR TOTAL**
--- | --- | --- | --- | --- | ---
Tornillería | % | 0.06 | $24,969,576 | $1,566,026 |
Cuadrilla Estructural 3-1 | Hc | 116.29 | $45,518 | $5,293,243 |

3.2 **MUROS ESTRUCTURALES** |
3.2.1 Muros Primer Piso Perfiles S894116 | m2 | 107.23 | $70,306 | $7,538,945 |
Perfiles S894116 | ml | 493.00 | $9,031 | $4,452,402 |
Refuerzos Perfiles S894116 | ml | 39.44 | $9,031 | $356,192 |
Conexiones Muros Primer Piso | %(perfiles) | 0.01 | $4,452,402 | $63,660 |
Anclajes Sísmico Primer Piso | %(perfiles) | 0.20 | $4,452,402 | $872,229 |
Tornillería | %(perfiles) | 0.07 | $4,452,402 | $330,193 |
Cuadrilla Estructural 3-1 | Hc | 32.17 | $45,518 | $1,464,269 |

3.2.2 Muros Primer Piso Perfiles S894118 | m2 | 301.37 | $88,915 | $26,796,240 |
Perfiles S894118 | ml | 2486.00 | $7,225 | $17,961,333 |
Conexiones Muros Primer Piso | %(perfiles) | 0.02 | $17,961,333 | $321,028 |
Anclajes Sísmico Primer Piso | %(perfiles) | 0.24 | $17,961,333 | $4,398,551 |
Cuadrilla Estructural 3-1 | Hc | 90.41 | $45,518 | $4,115,328 |

3.2.3 Muros Segundo Piso Perfiles S894118 | m2 | 392.88 | $69,718 | $27,390,842 |
Perfiles S894118 | ml | 2474.00 | $7,225 | $17,874,633 |
Refuerzos Perfiles S894118 | ml | 197.92 | $7,225 | $1,429,971 |
Conexiones Muros Segundo Piso | %(perfiles) | 0.09 | $17,874,633 | $1,544,368 |
Tornillería | %(perfiles) | 0.07 | $17,874,633 | $1,176,936 |
Cuadrilla Estructural 3-1 | Hc | 117.86 | $45,518 | $5,364,934 |

3.2.4 Muros Tercer Piso Perfiles S894118 | m2 | 466.18 | $65,967 | $30,752,500 |
Perfiles S894118 | ml | 2719.00 | $7,225 | $19,644,756 |
Refuerzos Perfiles S894118 | ml | 217.52 | $7,225 | $1,571,581 |
Conexiones Muros Tercer Piso | %(perfiles) | 0.09 | $19,644,756 | $1,697,307 |
Tornillería | %(perfiles) | 0.07 | $19,644,756 | $1,472,982 |
Cuadrilla Estructural 3-1 | Hc | 139.85 | $45,518 | $6,365,874 |
Como se observa la estructura esta básicamente conformada por los perfiles de bajo espesor en sus diferentes dimensiones de acuerdo al diseño, y por una serie de refuerzo los cuales también son construidos a partir de perfiles del mismo tipo de los muros, ayudando a una mayor rigidez de la estructura. Basados en la Tabla 5 y Tabla 6 en donde se realizo el análisis de precios de mano de obra para Colombia en el año 2015 se obtuvieron los valores de cada cuadrilla.

La mano de obra como se puede apreciar en el análisis de precios unitarios se expreso en Hc/ m2, y basados en los rendimientos presentados el Dossier informativo sobre Light Steel Framing de la empresa consultora RATIO:N:ING. (S.L, 2010) donde precisan que los tiempos de construcción o de montaje del sistema constructivo esta directamente ligado con la experiencia del equipo de montadores sin embargo para un equipo de 4 montadores la empresa consultora indica los siguientes rendimientos:

- 20 m2 superficie/ día para estructura de paredes.
- 40 m2/día para forjados mixtos hormigón – acero.
- 18 m2/día para forjados de viga de acero.
- 20 m2/día para cubiertas a base de cerchas.
- 18 m2/día para cubiertas de viga de acero.

Al final se obtuvo como resultado que la estructura de las ocho casa evaluadas tiene un costo directo de $ 136,338,461
Mampostería Estructural

Como se mencionó anteriormente la estructura de este sistema constructivo está basado en los muros estructurales de mampostería parcialmente reforzados por medio de un grouting y acero estructural.

Para esto se evaluaron los costos de los materiales para la estructura en mampostería.

Tabla 13. Costo Materiales Capítulo Estructura Mampostería (Fuente: Elaboración Propia)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Valor Unitario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concreto Grava Común 3000</td>
<td>m3</td>
<td>$313,316</td>
</tr>
<tr>
<td>Concreto Grava Fina 3000</td>
<td>m3</td>
<td>$313,316</td>
</tr>
<tr>
<td>Acero Refuerzo Figurado 60.000</td>
<td>Kg</td>
<td>$1,691</td>
</tr>
<tr>
<td>Alambre Negro Cal 18</td>
<td>Kg</td>
<td>$2,255</td>
</tr>
<tr>
<td>Placa Alveolar</td>
<td>m2</td>
<td>$53,550</td>
</tr>
<tr>
<td>Bloque Arcilla Estructural 33x23x9</td>
<td>Und</td>
<td>$890</td>
</tr>
<tr>
<td>Bloque Arcilla Estructural 33x23x12</td>
<td>Und</td>
<td>$1,100</td>
</tr>
<tr>
<td>Mortero Grouting 125 kg/cm2</td>
<td>m3</td>
<td>$286,007</td>
</tr>
<tr>
<td>Malla RAM</td>
<td>Kg</td>
<td>$2,616</td>
</tr>
<tr>
<td>Mortero Pega Pañete 75 kg/cm2</td>
<td>m3</td>
<td>$212,159</td>
</tr>
</tbody>
</table>

Los precios de materiales fueron actualizados de acuerdo a los principales distribuidores de materiales en Bogotá. Obteniendo los siguientes costos:
Tabla 14. Costos Directos Capítulo Estructura Mampostería (Fuente: Elaboración Propia)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPCIÓN</th>
<th>UNIDAD DE MEDIDA</th>
<th>CANTIDADES</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ESTRUCTURA</td>
<td></td>
<td></td>
<td></td>
<td>$109,470,409</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>PLACAS AEREAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1.1</td>
<td>Placa Alveolar</td>
<td>m2</td>
<td>387.63</td>
<td>$69,815</td>
<td>$27,062,569</td>
</tr>
<tr>
<td></td>
<td>Acero Refuerzo Figurado 60.000</td>
<td>Kg</td>
<td>138.75</td>
<td>$1,691</td>
<td>$234,665</td>
</tr>
<tr>
<td></td>
<td>Alambre Negro Cal 18</td>
<td>Kg</td>
<td>4.15</td>
<td>$2,255</td>
<td>$9,358</td>
</tr>
<tr>
<td></td>
<td>Concreto Grava Fina 3000</td>
<td>m3</td>
<td>0.55</td>
<td>$313,316</td>
<td>$171,697</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Estructura 1-3</td>
<td>Hc</td>
<td>173.66</td>
<td>$35,624</td>
<td>$6,186,464</td>
</tr>
<tr>
<td></td>
<td>Placa Alveolar</td>
<td>m2</td>
<td>382.08</td>
<td>$53,550</td>
<td>$20,460,384</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Vigas Aéreas</td>
<td>m3</td>
<td>10.16</td>
<td>$597,511</td>
<td>$6,070,708</td>
</tr>
<tr>
<td></td>
<td>Concreto Grava Común 3000</td>
<td>m3</td>
<td>10.66</td>
<td>$313,316</td>
<td>$3,339,949</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Estructura 1-1</td>
<td>Hc</td>
<td>134.61</td>
<td>$20,286</td>
<td>$2,730,759</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Acero Refuerzo de Vigas</td>
<td>Kg</td>
<td>1107.00</td>
<td>$1,759</td>
<td>$1,947,137</td>
</tr>
<tr>
<td></td>
<td>Acero Refuerzo Figurado 60.000</td>
<td>Kg</td>
<td>1107.00</td>
<td>$1,691</td>
<td>$1,872,247</td>
</tr>
<tr>
<td></td>
<td>Alambre Negro Cal 18</td>
<td>Kg</td>
<td>33.21</td>
<td>$2,255</td>
<td>$74,890</td>
</tr>
<tr>
<td>3.2</td>
<td>MUROS ESTRUCTURALES</td>
<td></td>
<td></td>
<td></td>
<td>$63,793,529</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Muro Estructural Bloque Arcilla e=9cm</td>
<td>m</td>
<td>280.00</td>
<td>$34,600</td>
<td>$9,688,000</td>
</tr>
<tr>
<td></td>
<td>Bloque Arcilla Estructural 33x23x9</td>
<td>Und</td>
<td>10967.00</td>
<td>$890</td>
<td>$9,760,630</td>
</tr>
<tr>
<td></td>
<td>Mortero Pega Pañete 75 kg/cm2</td>
<td>m3</td>
<td>4.26</td>
<td>$212,159</td>
<td>$903,799</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Obra Negra 1-1</td>
<td>Hc</td>
<td>149.74</td>
<td>$19,298</td>
<td>$2,889,683</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Muro Estructural Bloque Arcilla e=12cm</td>
<td>m2</td>
<td>1277.90</td>
<td>$27,922</td>
<td>$35,681,115</td>
</tr>
<tr>
<td></td>
<td>Bloque Arcilla Estructural 33x23x12</td>
<td>Und</td>
<td>16913.30</td>
<td>$1,100</td>
<td>$18,604,630</td>
</tr>
<tr>
<td></td>
<td>Bloque Arcilla Estructural 33x23x12 Medio</td>
<td>Und</td>
<td>1341.74</td>
<td>$789</td>
<td>$1,058,633</td>
</tr>
<tr>
<td></td>
<td>Mortero Pega Pañete 75 kg/cm2</td>
<td>m3</td>
<td>16.83</td>
<td>$212,159</td>
<td>$3,570,642</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Obra Negra 1-1</td>
<td>Hc</td>
<td>645.00</td>
<td>$19,298</td>
<td>$12,447,210</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Grouting Dovelas</td>
<td>m</td>
<td>2972.80</td>
<td>$3,031</td>
<td>$9,011,567</td>
</tr>
</tbody>
</table>
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.

Jose Luis Lamus R. - 200914262

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPCIÓN</th>
<th>UNIDAD DE MEDIDA</th>
<th>CANTIDADES</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mortero Grouting 125 kg/cm²</td>
<td>m³</td>
<td>16.87</td>
<td>$286,007</td>
<td>$4,824,943</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Estructura 1-1</td>
<td>Hc</td>
<td>206.38</td>
<td>$20,286</td>
<td>$4,186,625</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Acero de Refuerzos Muros</td>
<td>Kg</td>
<td>2059.15</td>
<td>$1,759</td>
<td>$3,621,893</td>
</tr>
<tr>
<td></td>
<td>Acero Refuerzo Figurado 60.000</td>
<td>Kg</td>
<td>2059.15</td>
<td>$1,691</td>
<td>$3,482,599</td>
</tr>
<tr>
<td></td>
<td>Alambre Negro Cal 18</td>
<td>Kg</td>
<td>61.77</td>
<td>$2,255</td>
<td>$139,294</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Malla RAM Muros</td>
<td>Kg</td>
<td>1744.00</td>
<td>$2,616</td>
<td>$4,562,304</td>
</tr>
<tr>
<td></td>
<td>Malla RAM</td>
<td>Kg</td>
<td>1744.00</td>
<td>$2,616</td>
<td>$4,562,304</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Viga Cinta 12 x20</td>
<td>m</td>
<td>37.97</td>
<td>$24,822</td>
<td>$942,558</td>
</tr>
<tr>
<td></td>
<td>Concreto Grava Común 3000</td>
<td>m³</td>
<td>1.00</td>
<td>$313,316</td>
<td>$314,098</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Estructura 1-1</td>
<td>Hc</td>
<td>30.98</td>
<td>$20,286</td>
<td>$628,460</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Acero de Refuerzo Viga Cinta</td>
<td>Kg</td>
<td>162.65</td>
<td>$1,759</td>
<td>$286,091</td>
</tr>
<tr>
<td></td>
<td>Acero Refuerzo Figurado 60.000</td>
<td>Kg</td>
<td>162.65</td>
<td>$1,691</td>
<td>$275,087</td>
</tr>
<tr>
<td></td>
<td>Alambre Negro Cal 18</td>
<td>Kg</td>
<td>4.88</td>
<td>$2,255</td>
<td>$11,005</td>
</tr>
</tbody>
</table>

3.3 | ESCALERAS | $10,596,467 |

3.3.1 | Escalera Maciza Tramo 3000 PSI | Und | 16.00 | $569,056 | $9,104,893 |
	Concreto Grava Común 3000	m³	17.50	$313,316	$5,483,030
	Formaleta Metálica Entrepiso	m²	89.60	$6,000	$537,600
	Vibrador Concreto Eléctrico	Hr	20.00	$10,000	$200,000
	Cuadrilla Estructura 1-1	Hc	142.18	$20,286	$2,884,263
3.3.2	Acero Refuerzo Escaleras	Kg	848.00	$1,759	$1,491,574
	Acero Refuerzo Figurado 60.000	Kg	848.00	$1,691	$1,434,205
	Alambre Negro Cal 18	Kg	25.44	$2,255	$57,368

El análisis de costos directos de la estructura en mampostería estructural para el modulo de 8 casas evaluado arrojo que el valor total que este ítem representa es de **$109,470,409**
6.1.3 Revestimientos y Acabados.

En este aspecto es necesario explicar el nivel de detalle al que se llevo cada sistema constructivo, dado que como el sistema light steel framing se caracteriza por tener un nivel de acabado mayor, pero como se menciono anteriormente la mampostería fue llevada a un nivel de acabado equivalente al de el LSF.

De acuerdo a la revisión de ítems necesarios para la construcción del sistema se obtuvo un listado de precios de materiales los cuales fueron utilizados para el precio de análisis unitario de los ítems que se encuentran en el capítulo de Revestimientos y Acabados, estos valores fueron obtenidos de diferentes fuentes de costos del país como lo son el listado de precio de los diferentes fabricantes y proveedores.

| Tabla 15. Costos de Materiales – Revestimientos y Acabados -Fuente: (Elaboración Propia) |
|---|---------|-------------------|
| **Descripción** | **Unidad** | **Valor Unitario** |
| Lamina Yeso Cartón 2.44 x 1.22 ST 1/2 " | Und | $15,500 |
| Lamina Yeso Cartón 2.44 x 1.22 ST 3/8 " | Und | $15,000 |
| Lamina en Fibrocemento 2.44 x 1.22 10 mm | Und | $43,000 |
| Lamina en Fibrocemento 2.44 x 1.22 17 mm | Und | $83,950 |
| Masilla | Gl | $3,300 |
| Mortero Pega Pañete 75 kg/cm2 | m3 | $212,159 |
| Pintura Acrílica 100 Difable Agua Mate | Gal | $42,282 |

Siendo así se procedió a realizar en análisis de presupuesto para los Revestimientos y Acabados de cada sistema constructivo. A continuación se muestran los resultados:
Basados en las dimensiones de los diseños arquitectónicos del proyecto tocaza, se procedió a realizar un análisis de cantidades para posteriormente realizar la construcción del presupuesto.

Tabla 16. Cantidades Revestimientos/ Acabados (Fuente: Elaboración Propia)

<table>
<thead>
<tr>
<th>Ubicación</th>
<th>Item</th>
<th>Unidad</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muros interiores</td>
<td>Revestimiento lamina Yeso 12.7 mm</td>
<td>m2</td>
<td>1842.57</td>
</tr>
<tr>
<td>Fachada</td>
<td>Cerramiento en Fibrocemento 10 mm</td>
<td>m2</td>
<td>528.24</td>
</tr>
<tr>
<td>Entrepisos</td>
<td>Revestimiento entrepiso Laminas Fibrocemento 14 mm</td>
<td>m2</td>
<td>382.08</td>
</tr>
<tr>
<td>Cielo rasos</td>
<td>Cielo raso en Laminas de Yeso Cartón 9.5 mm</td>
<td>m2</td>
<td>382.08</td>
</tr>
</tbody>
</table>

Basado en la Tabla 16 de cantidades y los costos de materiales se procedió a realizar el análisis de costos para el módulo de 8 casas en el capítulo de Revestimientos y Acabados.

Tabla 17. Análisis de Presupuesto Revestimientos/ Acabados LSF (Fuente: Elaboración Propia)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPCIÓN</th>
<th>UNIDAD DE MEDIDA</th>
<th>CANTIDADES</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>REVESTIMIENTOS Y ACABADOS</td>
<td></td>
<td></td>
<td></td>
<td>$66,866,664</td>
</tr>
<tr>
<td>4.1</td>
<td>MUROS INTERIORES</td>
<td></td>
<td></td>
<td></td>
<td>$30,225,470</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Revestimiento lamina Yeso 12.7 mm</td>
<td>m2</td>
<td>1842.57</td>
<td>$13,362</td>
<td>$24,620,793</td>
</tr>
<tr>
<td></td>
<td>Lamina Yeso Cartón 2.44 x 1.22 ST 1/2 “</td>
<td>Und</td>
<td>644.90</td>
<td>$16,800</td>
<td>$10,834,312</td>
</tr>
<tr>
<td></td>
<td>Tornillería</td>
<td>%(lamina)</td>
<td>0.05</td>
<td>$10,834,312</td>
<td>$541,716</td>
</tr>
<tr>
<td></td>
<td>Masilla</td>
<td>Gl</td>
<td>313.24</td>
<td>$6,000</td>
<td>$1,879,421</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Acabados 1-1</td>
<td>Hc</td>
<td>589.00</td>
<td>$19,296</td>
<td>$11,365,344</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Vinilo 2 manos para interiores</td>
<td>m2</td>
<td>1842.57</td>
<td>$3,042</td>
<td>$5,604,677</td>
</tr>
<tr>
<td></td>
<td>Pintura Acrílica 100 Dílui ble Agua</td>
<td>Gal</td>
<td>73.70</td>
<td>$42,282</td>
<td>$3,116,265</td>
</tr>
</tbody>
</table>
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.

Jose Luis Lamus R. – 200914262

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPCIÓN</th>
<th>UNIDAD DE MEDIDA</th>
<th>CANTIDADES</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Acabados 1-1</td>
<td>Hc</td>
<td>128.96</td>
<td>$19,296</td>
<td>$2,488,412</td>
</tr>
<tr>
<td>4.20</td>
<td>MUROS EXTERIORES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.21</td>
<td>Cerramiento en Fibrocemento 10mm</td>
<td>m2</td>
<td>528.24</td>
<td>$28,167</td>
<td>$14,879,124</td>
</tr>
<tr>
<td></td>
<td>Lamina en Fibrocemento 2.44 x 1.22 10mm</td>
<td>Und</td>
<td>176.08</td>
<td>$59,950</td>
<td>$10,555,996</td>
</tr>
<tr>
<td></td>
<td>Tornilleria</td>
<td>% (lamina)</td>
<td>0.05</td>
<td>$10,555,996</td>
<td>$527,800</td>
</tr>
<tr>
<td></td>
<td>Masilla</td>
<td>Gl</td>
<td>89.80</td>
<td>$6,000</td>
<td>$538,805</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Acabados 1-1</td>
<td>Hc</td>
<td>168.77</td>
<td>$19,296</td>
<td>$3,256,524</td>
</tr>
<tr>
<td></td>
<td>Juntas de Dilatación</td>
<td>m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.22</td>
<td>Vinilo 2 manos para fachada</td>
<td>m2</td>
<td>528.24</td>
<td>$3,042</td>
<td>$1,606,571</td>
</tr>
<tr>
<td></td>
<td>Pintura Acrílica 100 Diluible Agua Mate</td>
<td>Gal</td>
<td>21.13</td>
<td>$42,282</td>
<td>$893,391</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Pintura 1-1</td>
<td>Hc</td>
<td>36.96</td>
<td>$19,296</td>
<td>$713,180</td>
</tr>
<tr>
<td>4.3</td>
<td>ENTREPISO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.31</td>
<td>Revestimiento entrepiso</td>
<td>m2</td>
<td>382.08</td>
<td>$33,793</td>
<td>$12,911,635</td>
</tr>
<tr>
<td></td>
<td>Lamina en Fibrocemento 2.44 x 1.22 17 mm</td>
<td>Und</td>
<td>127.36</td>
<td>$83,950</td>
<td>$10,691,872</td>
</tr>
<tr>
<td></td>
<td>Tornilleria</td>
<td>% (lamina)</td>
<td>0.05</td>
<td>$10,691,872</td>
<td>$534,594</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Acabados 1-1</td>
<td>Hc</td>
<td>87.33</td>
<td>$19,296</td>
<td>$1,685,169</td>
</tr>
<tr>
<td>4.32</td>
<td>Cielo raso en Laminas de Yeso Cartón 12.7 mm</td>
<td>m2</td>
<td>382.08</td>
<td>$13,362</td>
<td>$5,105,430</td>
</tr>
<tr>
<td></td>
<td>Lamina Yeso Cartón 2.44 x 1.22 ST 1/2 "</td>
<td>Und</td>
<td>133.73</td>
<td>$16,800</td>
<td>$2,246,630</td>
</tr>
<tr>
<td></td>
<td>Tornilleria</td>
<td>% (lamina)</td>
<td>0.05</td>
<td>$2,246,630</td>
<td>$112,332</td>
</tr>
<tr>
<td></td>
<td>Masilla</td>
<td>Gl</td>
<td>64.95</td>
<td>$6,000</td>
<td>$389,722</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Acabados 1-1</td>
<td>Hc</td>
<td>97.03</td>
<td>$19,296</td>
<td>$1,872,291</td>
</tr>
<tr>
<td>4.3</td>
<td>ESCALERAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cerramiento fibrocemento 17</td>
<td>m2</td>
<td>45.00</td>
<td>$47,521</td>
<td>$2,138,433</td>
</tr>
</tbody>
</table>

$16,485,696

$18,017,065

$2,138,433
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.

Jose Luis Lamus R. - 200914262

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPCIÓN</th>
<th>UNIDAD DE MEDIDA</th>
<th>CANTIDADES</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>Lamina en Fibrocemento 2.44 x 1.22</td>
<td>Und</td>
<td>15.00</td>
<td>$83,950</td>
<td>$1,259,250</td>
</tr>
<tr>
<td></td>
<td>17 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tornillería</td>
<td>% (lamina)</td>
<td>0.05</td>
<td>$1,259,250</td>
<td>$62,963</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Acabados 1-1</td>
<td>Hc</td>
<td>42.30</td>
<td>$19,296</td>
<td>$816,221</td>
</tr>
</tbody>
</table>

Como resultado obtenemos que este capítulo tiene un costo de $66,866,664 para el modulo de 8 casas.

- **Mampostería Estructural**

Basados en las dimensiones de los diseños arquitectónicos del proyecto torcaza, se procedió a realizar un análisis de cantidades para posteriormente realizar la construcción del presupuesto.

Tabla 18. Cantidades Revestimientos y Acabados - Mampostería Estructura (Fuente: Elaboración Propia)

<table>
<thead>
<tr>
<th>Ubicación</th>
<th>Ítem</th>
<th>Unidad</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muros interiores</td>
<td>Pañete muros</td>
<td>m2</td>
<td>1842.57</td>
</tr>
<tr>
<td>Muros interiores</td>
<td>Estuco</td>
<td>m2</td>
<td>1842.57</td>
</tr>
<tr>
<td>Muros interiores</td>
<td>Filos y Dilataciones</td>
<td>m</td>
<td>343.08</td>
</tr>
<tr>
<td>Entrepisos</td>
<td>Resane Bajo Placa</td>
<td>m2</td>
<td>382.08</td>
</tr>
<tr>
<td>Entrepisos</td>
<td>Estuco</td>
<td>m2</td>
<td>382.08</td>
</tr>
</tbody>
</table>

Basado en la **Tabla 18** de cantidades y los costos de materiales se procedió a realizar el análisis de costos para el modulo de 8 casas en el capítulo de Revestimientos y Acabados.
Tabla 19 Análisis de Presupuesto Revestimientos/ Acabados Mampostería Estructural (Fuente: Elaboración Propia)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPCIÓN</th>
<th>UNIDAD DE MEDIDA</th>
<th>CANTIDADES</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>REVESTIMIENTOS/ACABADOS</td>
<td></td>
<td></td>
<td></td>
<td>$54,502,089</td>
</tr>
<tr>
<td>4.1</td>
<td>PANETES BAJO PLACA</td>
<td></td>
<td></td>
<td></td>
<td>$6,727,642</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Resane Bajo Placa</td>
<td>m2</td>
<td>350.00</td>
<td>$12,380</td>
<td>$4,332,942</td>
</tr>
<tr>
<td></td>
<td>Mortero Pega Pañete 75 kg/cm2</td>
<td>m3</td>
<td>8.50</td>
<td>$300,000</td>
<td>$2,550,000</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Obra Negra 1-1</td>
<td>Hc</td>
<td>92.39</td>
<td>$19,298</td>
<td>$1,782,942</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Estuco</td>
<td>m2</td>
<td>350.00</td>
<td>$3,800</td>
<td>$1,330,000</td>
</tr>
<tr>
<td></td>
<td>Estuco Plástico</td>
<td>gl</td>
<td>58.33</td>
<td>$10,200</td>
<td>$595,000</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Acabados 1-1</td>
<td>Hc</td>
<td>38.09</td>
<td>$19,298</td>
<td>$735,000</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Vinilo 2 manos para interiores</td>
<td>m2</td>
<td>350.00</td>
<td>$3,042</td>
<td>$1,064,700</td>
</tr>
<tr>
<td></td>
<td>Pintura Acrílica 100 Diluible Agua Mate</td>
<td>Gal</td>
<td>14.00</td>
<td>$42,282</td>
<td>$591,941</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Acabados 1-1</td>
<td>Hc</td>
<td>24.50</td>
<td>$19,298</td>
<td>$472,752</td>
</tr>
<tr>
<td>4.2</td>
<td>PANETES MUROS INTERNOS</td>
<td></td>
<td></td>
<td></td>
<td>$37,326,437</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Filos y Dilataciones</td>
<td>m</td>
<td>343.08</td>
<td>$2,574</td>
<td>$883,213</td>
</tr>
<tr>
<td></td>
<td>Mortero Retardado 1500</td>
<td>m3</td>
<td>0.31</td>
<td>$219,283</td>
<td>$67,101</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Obra Negra 1-1</td>
<td>Hc</td>
<td>42.29</td>
<td>$19,298</td>
<td>$816,112</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Pañete muros</td>
<td>m2</td>
<td>1842.57</td>
<td>$12,937</td>
<td>$23,836,523</td>
</tr>
<tr>
<td></td>
<td>Mortero Pega Pañete 75 kg/cm2</td>
<td>m3</td>
<td>48.77</td>
<td>$212,159</td>
<td>$10,347,221</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Obra Negra 1-1</td>
<td>Hc</td>
<td>699.00</td>
<td>$19,298</td>
<td>$13,489,302</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Estuco</td>
<td>m2</td>
<td>1842.57</td>
<td>$3,800</td>
<td>$7,001,766</td>
</tr>
<tr>
<td></td>
<td>Estuco Plástico</td>
<td>gl</td>
<td>307.10</td>
<td>$10,200</td>
<td>$3,132,369</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Acabados 1-1</td>
<td>Hc</td>
<td>200.51</td>
<td>$19,298</td>
<td>$3,869,397</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Vinilo 2 manos para interiores</td>
<td>m2</td>
<td>1842.57</td>
<td>$3,042</td>
<td>$5,604,935</td>
</tr>
<tr>
<td></td>
<td>Pintura Acrílica 100 Diluible Agua Mate</td>
<td>Gal</td>
<td>73.70</td>
<td>$42,282</td>
<td>$3,116,265</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Acabados 1-1</td>
<td>Hc</td>
<td>128.96</td>
<td>$19,298</td>
<td>$2,488,670</td>
</tr>
<tr>
<td>4.3</td>
<td>PANETES MUROS EXTERNOS</td>
<td></td>
<td></td>
<td></td>
<td>$10,448,010</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Pañete Muros exteriores Fachada</td>
<td>m2</td>
<td>528.24</td>
<td>$12,937</td>
<td>$6,833,728</td>
</tr>
<tr>
<td>ITEM</td>
<td>DESCRIPCIÓN</td>
<td>UNIDAD DE MEDIDA</td>
<td>CANTIDADES</td>
<td>VALOR UNITARIO</td>
<td>VALOR TOTAL</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------------</td>
<td>------------------</td>
<td>------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>Mortero Pega Pañete 75 kg/cm²</td>
<td>m3</td>
<td>13.98</td>
<td>$212,159</td>
<td>$2,966,409</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Obra Negra 1-1</td>
<td>Hc</td>
<td>200.40</td>
<td>$19,298</td>
<td>$3,867,319</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Estuco</td>
<td>m2</td>
<td>528.24</td>
<td>$3,800</td>
<td>$2,007,312</td>
</tr>
<tr>
<td></td>
<td>Estuco Plástico</td>
<td>gl</td>
<td>88.04</td>
<td>$10,200</td>
<td>$898,008</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Acabados 1-1</td>
<td>Hc</td>
<td>57.48</td>
<td>$19,298</td>
<td>$1,109,304</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Vinilo 2 manos para fachada</td>
<td>m2</td>
<td>528.24</td>
<td>$3,042</td>
<td>$1,606,969</td>
</tr>
<tr>
<td></td>
<td>Pintura Acrílica 100 Diluible Agua Mate</td>
<td>Gal</td>
<td>21.13</td>
<td>$42,282</td>
<td>$893,391</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Acabados 1-1</td>
<td>Hc</td>
<td>36.98</td>
<td>$19,298</td>
<td>$713,578</td>
</tr>
</tbody>
</table>

Como se observa el costo que representa el capítulo es de **$54,502,089** para el modulo de 8 casas.
6.1.4 Cubierta.

La estructura de cubierta para ambos sistemas es diferente, como se mostro en la Tabla 4. Por el lado del light Steel Framing, se tiene la estructura conformada por vigas de acero galvanizado, mientras que en la mampostería se conforma por perfiles de acero No. 100. En los demás aspectos ambas cubiertas mantiene las mismas características como lo son las bajantes y canales en PVC y la tejas en fibrocemento. No. 10 y No 8.

Siendo así se muestra a continuación los costos directos de cada sistema para el capítulo de cubierta.

- Light Steel Framing

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPCIÓN</th>
<th>UNIDAD DE MEDIDA</th>
<th>CANTIDADES</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>CUBIERTA</td>
<td></td>
<td></td>
<td></td>
<td>$18,318,605</td>
</tr>
<tr>
<td>5.1</td>
<td>ESTRUCTURA DE CUBIERTA</td>
<td></td>
<td></td>
<td></td>
<td>$5,659,125</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Cubierta Perfiles S894116</td>
<td>m2</td>
<td>212.24</td>
<td>$157,147</td>
<td>$5,659,125</td>
</tr>
<tr>
<td></td>
<td>Perfiles S894116</td>
<td>ml</td>
<td>300.00</td>
<td>$9,031</td>
<td>$2,709,300</td>
</tr>
<tr>
<td></td>
<td>Refuerzo Cubierta S894116</td>
<td>ml</td>
<td>24.01</td>
<td>$9,031</td>
<td>$216,834</td>
</tr>
<tr>
<td></td>
<td>Conexiones Cubierta</td>
<td>%</td>
<td>0.16</td>
<td>$2,709,300</td>
<td>$441,961</td>
</tr>
<tr>
<td></td>
<td>Tornillería</td>
<td>%</td>
<td>0.19</td>
<td>$2,709,300</td>
<td>$507,508</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Estructural 2-2</td>
<td>Hc</td>
<td>39.18</td>
<td>$45,518</td>
<td>$1,783,521</td>
</tr>
<tr>
<td>5.2</td>
<td>TIPO CUBIERTA</td>
<td></td>
<td></td>
<td></td>
<td>$9,176,655</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Placa Fibro cemento No. 10</td>
<td>Und</td>
<td>56.00</td>
<td>$128,021</td>
<td>$7,169,172</td>
</tr>
<tr>
<td></td>
<td>Gancho Amarre Teja Ondulada 50mm</td>
<td>Und</td>
<td>224.00</td>
<td>$650</td>
<td>$145,600</td>
</tr>
<tr>
<td></td>
<td>Placa Ondulada Fibrocem No 10</td>
<td>Und</td>
<td>56.00</td>
<td>$115,000</td>
<td>$6,440,000</td>
</tr>
</tbody>
</table>
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.

Jose Luis Lamus R. - 200914262

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPCIÓN</th>
<th>UNIDAD DE MEDIDA</th>
<th>CANTIDADES</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hc</td>
<td>30.24</td>
<td>$19,298</td>
<td>$583,572</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Placa Fibrocemento No. 8</td>
<td>Und</td>
<td>28.00</td>
<td>$71,696</td>
<td>$2,007,484</td>
</tr>
<tr>
<td></td>
<td>Gancho Amarre Teja Ondulada 50mm</td>
<td>Und</td>
<td>196.00</td>
<td>$650</td>
<td>$127,400</td>
</tr>
<tr>
<td></td>
<td>Placa Ondulada Traslucida No8</td>
<td>Und</td>
<td>49.00</td>
<td>$55,000</td>
<td>$2,695,000</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Obra Negra 1-1</td>
<td>Hc</td>
<td>22.05</td>
<td>$19,298</td>
<td>$425,521</td>
</tr>
</tbody>
</table>

5.3 SISTEMAS DE PROTECCION $436,953

5.3.1 Tapa Junta Horizontal Acero Galv Cal 14 d=20 m 11.60 $37,668 $436,953

	Masilla Plástica Sello Traslapos	Kg	0.80	$4,635	$3,710
	Cuadrilla Carpinterías 1-1	Hc	8.12	$25,473	$206,841
	Flanche Acero Galv Cal 14 d=20cm	m	23.20	$25,750	$597,400

5.4 SISTEMAS DE DRENAJE $3,045,872

5.4.1 Canal PVC Trapezoidal m 18.40 $41,989 $772,597

	Canal PVC Trapezoidal	m	51.91	$15,850	$822,805
	Soporte Canal Trap PVC	Und	138.10	$4,600	$635,242
	Tornillo Acero 1/2 x 1/4	Und	151.20	$130	$19,656
	Cuadrilla Inst Hidrosanit 1-1	Hc	18.54	$23,508	$435,889

5.4.2 Bajante PVC Rectangular m 56.00 $40,594 $2,273,275

	Bajante PVC Rectangular	m	57.75	$14,200	$820,050
	Soporte Metálico Bajante PVC	Und	157.50	$4,050	$637,875
	Tornillo Acero 1/2 x 1/4	Und	105.00	$130	$13,650
	Cuadrilla Inst Hidrosanit 1-1	Hc	15.67	$23,508	$368,400

Como se puede observar en la Tabla 20, el costo directo de la cubierta para el proyecto evaluado es de $18.318.605
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.

Jose Luis Lamus R. – 200914262

- **Mampostería Estructural**

Tabla 21. Costos Directos Capítulo Cubierta Mampostería (Fuente: Elaboración Propia)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPCIÓN</th>
<th>UNIDAD DE MEDIDA</th>
<th>CANTIDADES</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>CUBIERTA</td>
<td></td>
<td></td>
<td></td>
<td>$16,502,371</td>
</tr>
<tr>
<td>5.1</td>
<td>ESTRUCTURA DE CUBIERTA</td>
<td></td>
<td></td>
<td></td>
<td>$3,270,935</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Perfil Acero 100 x 40 mm e= 2.50 mm</td>
<td>m</td>
<td>84.00</td>
<td>$38,940</td>
<td>$3,270,935</td>
</tr>
<tr>
<td></td>
<td>Perfil de Acero 100 x 40 mm e= 2.50 mm</td>
<td>m</td>
<td>84.00</td>
<td>$22,715</td>
<td>$1,908,060</td>
</tr>
<tr>
<td></td>
<td>Montaje Perfil en Acero</td>
<td>m</td>
<td>84.00</td>
<td>$16,225</td>
<td>$1,362,875</td>
</tr>
<tr>
<td>5.2</td>
<td>TIPO DE CUBIERTA</td>
<td></td>
<td></td>
<td></td>
<td>$9,748,612</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Placa Fibrocemento No. 10</td>
<td>Und</td>
<td>56.00</td>
<td>$138,234</td>
<td>$7,741,128</td>
</tr>
<tr>
<td></td>
<td>Gancho Amarre Teja Ondulada 50mm</td>
<td>Und</td>
<td>224.00</td>
<td>$650</td>
<td>$145,600</td>
</tr>
<tr>
<td></td>
<td>Placa Ondulada Fibrocem No 10</td>
<td>Und</td>
<td>56.00</td>
<td>$115,000</td>
<td>$6,440,000</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Obra Negra 1-1</td>
<td>Hc</td>
<td>30.24</td>
<td>$19,298</td>
<td>$583,572</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Placa Fibrocemento No. 8</td>
<td>Und</td>
<td>28.00</td>
<td>$71,696</td>
<td>$2,007,484</td>
</tr>
<tr>
<td></td>
<td>Gancho Amarre Teja Ondulada 50mm</td>
<td>Und</td>
<td>196.00</td>
<td>$650</td>
<td>$127,400</td>
</tr>
<tr>
<td></td>
<td>Placa Ondulada Traslucesa No 8</td>
<td>Und</td>
<td>49.00</td>
<td>$55,000</td>
<td>$2,695,000</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Obra Negra 1-1</td>
<td>Hc</td>
<td>22.05</td>
<td>$19,298</td>
<td>$425,521</td>
</tr>
<tr>
<td>5.3</td>
<td>SISTEMAS DE PROTECCION</td>
<td></td>
<td></td>
<td></td>
<td>$436,953</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Tapa Junta Horizontal Acero Galv Cal 14 d=20</td>
<td>m</td>
<td>11.60</td>
<td>$37,668</td>
<td>$436,953</td>
</tr>
<tr>
<td></td>
<td>Masilla Plástica Sello Traslapos</td>
<td>Kg</td>
<td>0.80</td>
<td>$4,635</td>
<td>$3,710</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Carpinterías 1-1</td>
<td>Hc</td>
<td>8.12</td>
<td>$25,473</td>
<td>$206,841</td>
</tr>
<tr>
<td></td>
<td>Flanche Acero Galv Cal 14 d=20cm</td>
<td>m</td>
<td>23.20</td>
<td>$25,750</td>
<td>$597,400</td>
</tr>
</tbody>
</table>
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.

Jose Luis Lamus R. - 200914262

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPCIÓN</th>
<th>UNIDAD DE MEDIDA</th>
<th>CANTIDADES</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>SISTEMAS DE DRENAJE</td>
<td></td>
<td></td>
<td></td>
<td>$3,045,872</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Canal PVC Trapezoidal</td>
<td>m</td>
<td>18.40</td>
<td>$41,989</td>
<td>$772,597</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canal PVC Trapezoidal</td>
<td>m</td>
<td>51.91</td>
<td>$15,850</td>
<td>$822,805</td>
</tr>
<tr>
<td></td>
<td>Soporte Canal Trap PVC</td>
<td>Und</td>
<td>138.10</td>
<td>$4,600</td>
<td>$635,242</td>
</tr>
<tr>
<td></td>
<td>Tornillo Acero 1/2 x 1/4</td>
<td>Und</td>
<td>151.20</td>
<td>$130</td>
<td>$19,656</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Inst Hidrosanit 1-1</td>
<td>Hc</td>
<td>18.54</td>
<td>$23,508</td>
<td>$435,889</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Bajante PVC Rectangular</td>
<td>m</td>
<td>56.00</td>
<td>$40,594</td>
<td>$2,273,275</td>
</tr>
<tr>
<td></td>
<td>Bajante PVC Rectangular</td>
<td>m</td>
<td>57.75</td>
<td>$14,200</td>
<td>$920,050</td>
</tr>
<tr>
<td></td>
<td>Soporte Metálico Bajante PVC</td>
<td>Und</td>
<td>157.50</td>
<td>$4,050</td>
<td>$637,875</td>
</tr>
<tr>
<td></td>
<td>Tornillo Acero 1/2 x 1/4</td>
<td>Und</td>
<td>105.00</td>
<td>$130</td>
<td>$13,650</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Inst Hidrosanit 1-1</td>
<td>Hc</td>
<td>15.67</td>
<td>$23,508</td>
<td>$368,400</td>
</tr>
</tbody>
</table>

Como se puede observar en la Tabla 21, el costo directo de la cubierta para el proyecto evaluado es de **$16,502.371**
6.1.5 Análisis de Resultados

Después de realizar el análisis de los diferentes capítulos y de estimar los presupuestos de obra para cada sistema constructivo; presentados en el Anexo 6 y Anexo 7. Se resumió en la Tabla 22 los resultado obtenidos de ambos sistemas y los principales aumentos o reducciones de LSF frente a la mampostería. Finalmente se obtuvo el sistema constructivo Light Steel Framing sería un 12 % más costoso en costos directos, lo que representaría un aumento de $35,923,099 con respecto a la mampostería estructural en el proyecto estudiado.

<table>
<thead>
<tr>
<th></th>
<th>DESCIPCION</th>
<th>C.D MAMPOSTERIA ESTRUCTURAL</th>
<th>C.D LIGHT STEEL FRAMING</th>
<th>AUMENTO/REDUCCION</th>
<th>PORCENTAJE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EXCAVACIONES Y RELLENO</td>
<td>$977,448</td>
<td>$977,448</td>
<td>$-</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>CIMENTACION</td>
<td>$24,837,992</td>
<td>$21,094,931</td>
<td>-$3,743,061</td>
<td>-15%</td>
</tr>
<tr>
<td></td>
<td>ESTRUCTURA</td>
<td>$109,470,409</td>
<td>$134,955,761</td>
<td>$25,485,351</td>
<td>23%</td>
</tr>
<tr>
<td></td>
<td>REVESTIMIENTOS/ACABADOS MUROS</td>
<td>$54,502,089</td>
<td>$66,866,664</td>
<td>$12,364,575</td>
<td>23%</td>
</tr>
<tr>
<td></td>
<td>CUBIERTA</td>
<td>$16,502,371</td>
<td>$18,318,605</td>
<td>$1,816,234</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td>REDES INTERNAS ENERGIA/TELF</td>
<td>$33,880,928</td>
<td>$33,880,928</td>
<td>$-</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>REDES INTERNAS DE AGUA</td>
<td>$21,223,541</td>
<td>$21,223,541</td>
<td>$-</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>REDES INTERNAS GAS</td>
<td>$2,485,624</td>
<td>$2,485,624</td>
<td>$-</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>ACABADO PISOS</td>
<td>$438,607</td>
<td>$438,607</td>
<td>$-</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>ENCHAPE MUROS</td>
<td>$2,863,677</td>
<td>$2,863,677</td>
<td>$-</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>CARPINTERIA MADERA</td>
<td>$1,398,413</td>
<td>$1,398,413</td>
<td>$-</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>CARPINTERIA METALICA</td>
<td>$7,045,751</td>
<td>$7,045,751</td>
<td>$-</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>SOLUCION EN VENTANAS</td>
<td>$9,211,085</td>
<td>$9,211,085</td>
<td>$-</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>DOTACION BANOS</td>
<td>$4,177,717</td>
<td>$4,177,717</td>
<td>$-</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>DOTACION COCINAS</td>
<td>$4,150,460</td>
<td>$4,150,460</td>
<td>$-</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>$293,166,112</td>
<td>$329,089,211</td>
<td>$35,923,099</td>
<td>12%</td>
</tr>
</tbody>
</table>
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.

Jose Luis Lamus R. - 200914262

En la Figura 38 encontramos los porcentajes aumento o reducción de costos directos del sistema light steel framing con respecto a la mampostería Estructural.

![Bar diagram showing cost percentage changes](image)

Figura 38. Porcentaje de aumento/ reducción de costos directos (Fuente: Elaboración Propia)

Observamos que de los cuatro capítulos de costos evaluados solamente en la cimentación encontramos una reducción de costos directos con el sistema LSF del 15%, mientras que en los tres capítulos restantes el uso de este sistema tendría un aumento del 23% en la estructura, 23% en los revestimientos y acabados y un 11% en la cubierta.

Finalmente encontramos que la construcción del modulo de ocho viviendas en el sistema light Steel Framing tendría un costo directo 12% mayor a la mampostería estructural.
6.2 Plazo de Ejecución

Se realizo un análisis de tiempos para ambos sistemas constructivos, basados en los rendimientos de personal y maquinaria o herramientas utilizadas en la construcción. Para los rendimientos de la mampostería estructural se tomaron datos reales de la obra de TORCAZA mientras que para la programación del LSF se utilizó los rendimientos teóricos que se encuentran en la literatura, como se menciono anteriormente basados en el Dossier informativo sobre Light Steel Framing de la empresa consultora RATI0:N:ING. (S.L, 2010) donde precisan que los tiempos de construcción o de montaje del sistema constructivo esta directamente ligado con la experiencia del equipo de montadores sin embargo para un equipo de 4 montadores la empresa consultora indica los siguientes rendimientos:

- 20 m² superficie/día para estructura de paredes.
- 40 m² superficie/día para forjados mixtos hormigón – acero.
- 18 m² superficie/día para forjados de viga de acero.
- 20 m² superficie/día para cubiertas a base de cerchas.
- 18 m² superficie/día para cubiertas de viga de acero.

Basado en lo anterior se obtuvieron las respectivas duraciones para las diferentes actividades del modelo de 8 viviendas sobre el cual se realizó el análisis. Se realizó una programación para los dos sistemas constructivos de forma equivalente aprovechando que ambos sistemas mantienen la misma concepción estructural; dicha secuencia constructiva se presentada a continuación:

![Diagrama de flujo de construcción]

Figura 39. Flujo de Construcción Viviendas (Fuente: Elaboración Propia)
6.2.1 Light Steel Framing.

Con el fin de realizar una programación de la construcción del modulo de ocho viviendas se realizo un análisis del proceso constructivo del light steel framing y las diferentes alternativas en las que se puede realizar la obra con el propósito de optimizar los tiempos, la cual es una de las ventajas más reconocidas de este sistema LSF. Basados en Figura 39 en donde se presenta el proceso constructivo de la obra; y en los rendimientos mencionados anteriormente, se calculo las duraciones para cada actividad del proceso y sus capitulos, obteniendo uno resultado de duraciones y correlaciones mostrados en la Tabla 23.

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>DURACION</th>
<th>ITEM</th>
<th>GRUPO</th>
<th>DURACION</th>
<th>CONDICIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavaciones vigas</td>
<td>2.68</td>
<td>1</td>
<td>Cim</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Armado de vigas</td>
<td>2.68</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundida de Cimentación</td>
<td>2.68</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muros Primer Piso</td>
<td>14</td>
<td>2</td>
<td>Est piso 1</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>Entrepiso Nivel 1 + Escalera</td>
<td>8</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muros Segundo Piso</td>
<td>13</td>
<td>3</td>
<td>Est piso 2</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>Entrepiso Nivel 2 + Escalera</td>
<td>9</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muros Tercer Piso</td>
<td>15</td>
<td>4</td>
<td>Est piso 3</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>Cubierta</td>
<td>8</td>
<td>5</td>
<td>Cubierta</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Instalaciones Redes Piso 1</td>
<td>1.3</td>
<td>6</td>
<td>Inst 1</td>
<td>1.3</td>
<td>2</td>
</tr>
<tr>
<td>Revestimientos (Muros + Cielo Raso) Nivel 1 + Pintura</td>
<td>14</td>
<td>7</td>
<td>Acab 1</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Instalaciones Redes Nivel 2</td>
<td>1.3</td>
<td>8</td>
<td>Inst 2</td>
<td>1.3</td>
<td>3;6</td>
</tr>
<tr>
<td>Revestimientos (Muros + Entrepiso + Escaleras) Nivel 2</td>
<td>11</td>
<td>9</td>
<td>Acab 2</td>
<td>11</td>
<td>7;8</td>
</tr>
<tr>
<td>Instalaciones Redes Nivel 3</td>
<td>1.3</td>
<td>10</td>
<td>Inst 3</td>
<td>1.3</td>
<td>4;8</td>
</tr>
</tbody>
</table>
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>DURACION</th>
<th>ITEM</th>
<th>GRUPO</th>
<th>DURACION</th>
<th>CONDICIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revestimientos (Muros + Entrepiso Nivel 3)</td>
<td>11</td>
<td>11</td>
<td>Acab 3</td>
<td>11</td>
<td>10;9</td>
</tr>
<tr>
<td>Enchape baños</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventanería</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpintería Metálica</td>
<td>2</td>
<td>12</td>
<td>Remates</td>
<td>13</td>
<td>5;11</td>
</tr>
<tr>
<td>Aparatos Sanitarios</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpintería Madera</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remates y Aseo Final</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Basados en la anterior tabla, se procedió a crear una matriz que represente las duraciones y relaciones entre las actividades con el objeto de calcular la duración total de la obra, el resultado de este análisis es presentado en la Tabla 24 y Tabla 25

Tabla 24. Matriz de duraciones y relaciones LSF- Fuente: (Elaboración Propia)

<table>
<thead>
<tr>
<th></th>
<th>Cim</th>
<th>Est Piso 1</th>
<th>Est Piso 2</th>
<th>Est Piso 3</th>
<th>Cubierta</th>
<th>Inst. 1</th>
<th>Inst. 2</th>
<th>Inst. 3</th>
<th>Acab. 1</th>
<th>Acab. 2</th>
<th>Acab. 3</th>
<th>Remates</th>
<th>Dur</th>
<th>Tmpe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dur</td>
<td>8</td>
<td>22</td>
<td>22</td>
<td>15</td>
<td>8</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>14</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Cim</td>
<td>8</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Est Piso 1</td>
<td>22</td>
<td>0</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Est Piso 2</td>
<td>22</td>
<td>0</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>Est Piso 3</td>
<td>15</td>
<td>0</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>Cubierta</td>
<td>8</td>
<td>0</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Inst. 1</td>
<td>1.5</td>
<td>0</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>Inst. 2</td>
<td>1.5</td>
<td>0</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>Inst. 3</td>
<td>1.5</td>
<td>0</td>
<td></td>
<td>31.5</td>
</tr>
<tr>
<td>Acab. 1</td>
<td>14</td>
<td>0</td>
<td></td>
<td>53.5</td>
</tr>
<tr>
<td>Acab. 2</td>
<td>11</td>
<td>0</td>
<td></td>
<td>68.5</td>
</tr>
<tr>
<td>Acab .3</td>
<td>11</td>
<td>0</td>
<td></td>
<td>79.5</td>
</tr>
<tr>
<td>Remates</td>
<td>13</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tmpe</td>
<td>0</td>
<td>8</td>
<td>30</td>
<td>52</td>
<td>71.5</td>
<td>42</td>
<td>56</td>
<td>67</td>
<td>43.5</td>
<td>57.5</td>
<td>68.5</td>
<td>79.5</td>
<td>87</td>
<td></td>
</tr>
</tbody>
</table>
Como resultado final, se obtuvo que la construcción del modelo de 8 viviendas pareadas se construiría con una duración total de 92.5 días, equivalente a 3.1 meses. Los resultados presentados en la Tabla 24 y Tabla 25 se graficaron en un diagrama de Gantt para poder analizar los resultados de una manera más sencilla; y así mismo, poder observar las actividades críticas durante el desarrollo del proyecto.
6.2.2 Mampostería Estructural.

Basados en la Figura 39 en donde encontramos el procesos constructivo para el análisis de tiempos en ambos sistemas constructivos y los rendimientos obtenidos de obra suministrado por Prodesa y comparados con literatura se calculo las duraciones para cada actividad del proceso y sus capítulos, obteniendo un resultado mostrado en la Tabla 26, de duraciones y correlaciones.

Tabla 26 Duraciones de actividades y capítulos Mampostería Estructural - Fuente: (Elaboración Propia)
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.

Jose Luis Lamus R. - 200914262

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>DURACION</th>
<th>ITEM</th>
<th>GRUPO</th>
<th>DURACION</th>
<th>CONDICIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mampostería piso 2</td>
<td>20</td>
<td>3</td>
<td>Est piso 2</td>
<td>39</td>
<td>2</td>
</tr>
<tr>
<td>Placa piso 3 + Escaleras</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mampostería piso 3</td>
<td>45</td>
<td>4</td>
<td>Est piso 3</td>
<td>45</td>
<td>3</td>
</tr>
<tr>
<td>Cubierta + Teja</td>
<td>30</td>
<td>5</td>
<td>Cubierta</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>Instalaciones de Redes Piso 1</td>
<td>2.5</td>
<td>6</td>
<td>Inst 1</td>
<td>2.5</td>
<td>2</td>
</tr>
<tr>
<td>Pañetes Muros Primer Piso +</td>
<td>8</td>
<td>7</td>
<td>Acab 1</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Resane bajo placa + Estuco +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pintura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instalaciones de Redes Piso 2</td>
<td>2.5</td>
<td>8</td>
<td>Inst 2</td>
<td>2.5</td>
<td>6;3</td>
</tr>
<tr>
<td>Pañete muros segundo piso +</td>
<td>8</td>
<td>9</td>
<td>Acab 2</td>
<td>8</td>
<td>7;8</td>
</tr>
<tr>
<td>resane bajo placa + Estuco +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pintura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instalaciones de Redes Piso 3</td>
<td>2.5</td>
<td>10</td>
<td>Inst 3</td>
<td>2.5</td>
<td>4;8</td>
</tr>
<tr>
<td>Pañetes Muros Tercer piso +</td>
<td>8</td>
<td>11</td>
<td>Acab 3</td>
<td>8</td>
<td>10;9</td>
</tr>
<tr>
<td>Estuco + pintura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enchape baños</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventanería</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpint. Metálica</td>
<td>1.5</td>
<td>12</td>
<td>Remates</td>
<td>12.5</td>
<td>5;11</td>
</tr>
<tr>
<td>Ap. Sanitarios</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpint. Madera A</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remates y Aseo Final A</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Basados en la anterior tabla, se procedió a crear una matriz que represente las duraciones y relaciones entre las actividades con el fin de calcular la duración total de la obra, el resultado de este análisis es presentado en la Tabla 27 y Tabla 28
Tabla 27. Matriz de duraciones y relaciones Mampostería - Fuente: (Elaboración Propia)

<table>
<thead>
<tr>
<th></th>
<th>Dur</th>
<th>Est Piso 1</th>
<th>Est Piso 2</th>
<th>Est Piso 3</th>
<th>Cubierta</th>
<th>Inst. 1</th>
<th>Inst. 2</th>
<th>Inst. 3</th>
<th>Acab. 1</th>
<th>Acab. 2</th>
<th>Acab. 3</th>
<th>Remates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cim</td>
<td>8</td>
<td>35</td>
<td>35</td>
<td>40</td>
<td>20</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>Est Piso 1</td>
<td>35</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Est Piso 2</td>
<td>35</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Est Piso 3</td>
<td>40</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cubierta</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Inst. 1</td>
<td>2.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Inst. 2</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Inst. 3</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Acab. 1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Acab. 2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Acab. 3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Remates</td>
<td>12</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 28. Tiempos y Holguras Mampostería Estructural - Fuente: (Elaboración Propia)

<table>
<thead>
<tr>
<th></th>
<th>Dur</th>
<th>Tmpe</th>
<th>Tmpt</th>
<th>Tmte</th>
<th>Tmtt</th>
<th>Ht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cim</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Est Piso 1</td>
<td>35</td>
<td>8</td>
<td>43</td>
<td>8</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td>Est Piso 2</td>
<td>35</td>
<td>43</td>
<td>78</td>
<td>43</td>
<td>78</td>
<td>0</td>
</tr>
<tr>
<td>Est Piso 3</td>
<td>40</td>
<td>78</td>
<td>118</td>
<td>78</td>
<td>118</td>
<td>0</td>
</tr>
<tr>
<td>Cubierta</td>
<td>20</td>
<td>118</td>
<td>138</td>
<td>118</td>
<td>138</td>
<td>0</td>
</tr>
<tr>
<td>Inst. 1</td>
<td>2.5</td>
<td>43</td>
<td>45.5</td>
<td>90.5</td>
<td>93</td>
<td>47.5</td>
</tr>
<tr>
<td>Inst. 2</td>
<td>2.5</td>
<td>78</td>
<td>80.5</td>
<td>105.5</td>
<td>108</td>
<td>27.5</td>
</tr>
<tr>
<td>Inst. 3</td>
<td>2.5</td>
<td>118</td>
<td>120.5</td>
<td>120.5</td>
<td>123</td>
<td>2.5</td>
</tr>
<tr>
<td>Acab. 1</td>
<td>15</td>
<td>45.5</td>
<td>60.5</td>
<td>93</td>
<td>108</td>
<td>47.5</td>
</tr>
<tr>
<td>Acab. 2</td>
<td>15</td>
<td>80.5</td>
<td>95.5</td>
<td>108</td>
<td>123</td>
<td>27.5</td>
</tr>
<tr>
<td>Acab. 3</td>
<td>15</td>
<td>120.5</td>
<td>135.5</td>
<td>123</td>
<td>138</td>
<td>2.5</td>
</tr>
<tr>
<td>Remates</td>
<td>12</td>
<td>138</td>
<td>150</td>
<td>138</td>
<td>150</td>
<td>0</td>
</tr>
</tbody>
</table>
Como resultado final, se obtuvo que la construcción del modelo de 8 viviendas pareadas se construiría con una duración total de 150 días equivalente a 5 meses. Los resultados presentados en la Tabla 27 y Tabla 28.

![Diagrama de Tiempos Mampostería Estructural](image)

Figura 41. Diagrama de Tiempos Mampostería Estructural

Fuente: (Elaboración Propia)
6.3 Costos Indirectos

Los proyectos de construcción además de costos directos, cuentan con unos costo indirectos requeridos para la ejecución de las obras, estos costos comúnmente son de los siguientes tipo:

- Administración
- Gastos Generales
- Equipos y Herramientas

A continuación se realizará una descripción de dichos costos los cuales se ven afectados en su gran mayoría directamente por la duración del proyecto, teniendo así ventajas sobre estos valores con el Light Steel Framing.

Basados en la duración antes mencionada del proyecto en light Steel Framing se procedió a calcular unos costos indirectos asociados a la construcción de las viviendas, para esto se tomó como base el estimativo de costos indirectos de la empresa Prodesa S.A en su proyecto Torcaza, y el resultado es presentado a continuación:

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>UNIDAD DE MEDIDA</th>
<th>CANTIDADES</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERSONAL PARA ADMINISTRACION</td>
<td>mes</td>
<td>3.1</td>
<td>$5,500,000</td>
<td>$17,050,000</td>
</tr>
<tr>
<td>Director de Obra</td>
<td>mes</td>
<td>3.1</td>
<td>$2,500,000</td>
<td>$7,750,000</td>
</tr>
<tr>
<td>Residente de Obra</td>
<td>mes</td>
<td>3.1</td>
<td>$1,560,000</td>
<td>$4,836,000</td>
</tr>
<tr>
<td>Auxiliar Administrativo</td>
<td>mes</td>
<td>3.1</td>
<td>$2,340,000</td>
<td>$7,254,000</td>
</tr>
<tr>
<td>Maestro General</td>
<td>mes</td>
<td>3.1</td>
<td>$1,023,750</td>
<td>$3,173,625</td>
</tr>
<tr>
<td>AYudante llavero</td>
<td>mes</td>
<td>3.1</td>
<td>$1,023,750</td>
<td>$3,173,625</td>
</tr>
<tr>
<td>Ayudante Oficios Varios</td>
<td>mes</td>
<td>3.1</td>
<td>$1,023,750</td>
<td>$3,173,625</td>
</tr>
<tr>
<td>CONSUMO SERVICIOS</td>
<td></td>
<td></td>
<td></td>
<td>$8,753,625</td>
</tr>
</tbody>
</table>

Tabla 29. Costos Indirectos LSF - Fuente: (Elaboración Propia)
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.

Jose Luis Lamus R. - 200914262

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>UNIDAD DE MEDIDA</th>
<th>CANTIDADES</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo Energía</td>
<td>mes</td>
<td>3.1</td>
<td>$500,000</td>
<td>$1,550,000</td>
</tr>
<tr>
<td>Consumo Agua Potable</td>
<td>mes</td>
<td>3.1</td>
<td>$1,300,000</td>
<td>$4,300,000</td>
</tr>
<tr>
<td>Provisionales Sanitarias (Baños)</td>
<td>mes</td>
<td>3.1</td>
<td>$1,023,750</td>
<td>$3,173,625</td>
</tr>
</tbody>
</table>

COMUNICACIONES

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>UNIDAD DE MEDIDA</th>
<th>CANTIDADES</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoreo Alarma</td>
<td>mes</td>
<td>3.1</td>
<td>$209,595</td>
<td>$649,744</td>
</tr>
<tr>
<td>Teléfono Celular</td>
<td>mes</td>
<td>3.1</td>
<td>$500,000</td>
<td>$1,550,000</td>
</tr>
</tbody>
</table>

SERVICIOS DE APOYO

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>UNIDAD DE MEDIDA</th>
<th>CANTIDADES</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vigilancia Turnos 24 Horas</td>
<td>mes</td>
<td>3.1</td>
<td>$6,500,000</td>
<td>$20,150,000</td>
</tr>
<tr>
<td>Aseos Obra</td>
<td>mes</td>
<td>3.1</td>
<td>$260,000</td>
<td>$806,000</td>
</tr>
</tbody>
</table>

HERRAMIENTAS

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>UNIDAD DE MEDIDA</th>
<th>CANTIDADES</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herramienta Menor</td>
<td>mes</td>
<td>3.1</td>
<td>$200,000</td>
<td>$620,000</td>
</tr>
</tbody>
</table>

DOTACIONES

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>UNIDAD DE MEDIDA</th>
<th>CANTIDADES</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dotación Seguridad Industrial</td>
<td>mes</td>
<td>3.1</td>
<td>$800,000</td>
<td>$2,480,000</td>
</tr>
</tbody>
</table>

Total Gastos Indirectos: **$78,246,619**

Tabla 30. Costos Indirectos LSF - Fuente: (Elaboración Propia)

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>UNIDAD DE MEDIDA</th>
<th>CANTIDADES</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERSONAL PARA ADMINISTRACION</td>
<td></td>
<td></td>
<td></td>
<td>$69,737,500</td>
</tr>
<tr>
<td>Director de Obra</td>
<td>mes</td>
<td>5</td>
<td>$5,500,000</td>
<td>$27,500,000</td>
</tr>
<tr>
<td>Residente de Obra</td>
<td>mes</td>
<td>5</td>
<td>$2,500,000</td>
<td>$12,500,000</td>
</tr>
<tr>
<td>Auxiliar Administrativo</td>
<td>mes</td>
<td>5</td>
<td>$1,560,000</td>
<td>$7,800,000</td>
</tr>
<tr>
<td>Maestro General</td>
<td>mes</td>
<td>5</td>
<td>$2,340,000</td>
<td>$11,700,000</td>
</tr>
<tr>
<td>Ayudante llavero</td>
<td>mes</td>
<td>5</td>
<td>$1,023,750</td>
<td>$5,118,750</td>
</tr>
<tr>
<td>Ayudante Oficios Varios</td>
<td>mes</td>
<td>5</td>
<td>$1,023,750</td>
<td>$5,118,750</td>
</tr>
</tbody>
</table>
Se obtiene así, que el costo indirecto asociado a gastos administrativos, gastos generales y equipos y herramientas es de $78,246,619 para el proyecto de 8 casas pareadas construidas con el sistema constructivo Light Steel Framing. Mientras tanto el análisis realizado para la mampostería estructural tuvo como resultado que el costo indirecto parta este sistema estructural sería de $126,204,224. En conclusión tendríamos que la reducción en costos indirectos al utilizar el sistema LSF sería del 38 % lo que equivaldría a un valor de $47,957,605.
6.4 Modelación Financiera

Los costos financieros del proyecto son un ítem representativo en la construcción, dado que en la promoción de estos proyectos se contempla una estructura de capital para la materialización de los proyectos donde comúnmente la mayor parte de la construcción es financiada por medio de un crédito constructor. En el proyecto “Torcaza” la estructura de capital utilizada consistió en un 10% de cuota inicial, 20% subsidios del gobierno y 70% crédito constructor, dado que el proyecto de la empresa PRODESA eran vivienda Tope VIS como se había mencionado anteriormente. Basados en esta misma idea pero debido a que el proyecto se plantea como viviendas NO VIS por los acabados finales que se contemplaron en los costos, se planteo una estructura de capital en donde los compradores realicen un pago de 30% de cuota inicial y 70 % contra entrega subrogando créditos a largo plazo. Bajo el anterior supuesto, obtenemos que los medios de financiación del proyecto son las cuotas iniciales y créditos.

Basado en precios de mercado para las viviendas se consideró un valor de $1.250.000 /m2 lo que implicaría un precio de venta de $108,125,000 por vivienda. Como tarea inicial se estimó una proyección de ventas e ingresos para la construcción en LSF y mampostería estructural dichas proyecciones son presentadas en las Tabla 31 y Tabla 32. Posteriormente con los resultados obtenidos de costos directos e indirectos se creo unos flujos de ingresos y egresos, para los costos financieros se tuvo en cuenta que los créditos constructores se encuentran alrededor del 7 % EA, y que adicional a los costos directos e indirectos calculados en nuestro análisis comparativo existen otros costos asociados a la promoción y gerencia de un proyecto inmobiliario los cuales fueron tenidos en cuenta en nuestro análisis.
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.

Jose Luis Lamus R. - 200914262

Tabla 31. Flujo de Ventas – LSF -Fuente: (Elaboración Propia)

<table>
<thead>
<tr>
<th>UNIDAD</th>
<th>ETAPA PREVENTAS</th>
<th>ETAPA DE CONSTRUCCION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MES -3</td>
<td>MES -2</td>
</tr>
<tr>
<td>1</td>
<td>$ 32,437,500</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>$ 10,812,500</td>
<td>$ 10,812,500</td>
</tr>
<tr>
<td>3</td>
<td>$ -</td>
<td>$ 32,437,500</td>
</tr>
<tr>
<td>4</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>5</td>
<td>$ -</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>7</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>8</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>Total</td>
<td>$ 43,250,000</td>
<td>$ 75,687,500</td>
</tr>
<tr>
<td>Acumulado</td>
<td>$ 43,250,000</td>
<td>$ 118,937,500</td>
</tr>
</tbody>
</table>

Tabla 32. Flujo de Ventas - Mampostería Estructural - Fuente: (Elaboración Propia)

<table>
<thead>
<tr>
<th>Unidad</th>
<th>ETAPA PREVENTAS</th>
<th>ETAPA DE CONSTRUCCION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MES -3</td>
<td>MES -2</td>
</tr>
<tr>
<td>1</td>
<td>$ 32,437,500</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>$ 10,812,500</td>
<td>$ 10,812,500</td>
</tr>
<tr>
<td>3</td>
<td>$ -</td>
<td>$ 32,437,500</td>
</tr>
<tr>
<td>4</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>5</td>
<td>$ -</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>7</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>8</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>Total</td>
<td>$ 43,250,000</td>
<td>$ 75,687,500</td>
</tr>
<tr>
<td>Acumulado</td>
<td>$ 43,250,000</td>
<td>$ 118,937,500</td>
</tr>
</tbody>
</table>

Como podemos observar para el flujo de ventas del proyecto se utilizó el mismo supuesto para ambos casos de estudio en donde en un periodo de tres meses de preventa se llega a un punto de equilibrio del proyecto, y se establece que el 30% de cuota inicial es cancelado de dos forma, un pago único o tres pagos parciales. Con estos resultados se procedió a crear los flujos de caja de cada proyecto los cuales encontramos en la Tabla 31 y Tabla 32.
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.
Jose Luis Lamus R. – 200914262

Tabla 33. Análisis de Flujo de Caja - 8 Viviendas LSF- Fuente: (Elaboración Propia)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>ETAPA PREVENTAS</th>
<th>ETAPA DE CONSTRUCCION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MES -3</td>
<td>MES -2</td>
</tr>
<tr>
<td>1 INGRESOS PROYECTO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Cuotas iniciales fideicomiso</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>1.2 Subrogaciones créditos</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>1.3 Capital de Trabajo</td>
<td>$ 21,205,597</td>
<td>$ 21,205,597</td>
</tr>
<tr>
<td>1.4 Créditos</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>A INGRESOS TOTALES</td>
<td>$ 21,205,597</td>
<td>$ 21,205,597</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 EGRESOS PROYECTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Lote</td>
</tr>
<tr>
<td>2.2 Diseños, Comercialización y Ventas</td>
</tr>
<tr>
<td>B TOTAL PRELIMINARES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 COSTOS DIRECTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D TOTAL COSTOS DIRECTOS</td>
</tr>
<tr>
<td>E TOTAL COSTOS INDIRECTOS</td>
</tr>
<tr>
<td>I DEVOLUCION DE CAPITAL</td>
</tr>
<tr>
<td>J DEVOLUCION DE CREDITO</td>
</tr>
<tr>
<td>H COSTOS FINANCIEROS (7% EA)</td>
</tr>
<tr>
<td>Egresos Totales</td>
</tr>
<tr>
<td>Flujo de Caja Mensual</td>
</tr>
<tr>
<td>Flujo de Caja Acumulada</td>
</tr>
</tbody>
</table>
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.

Jose Luis Lamus R. - 200914262

Tabla 34. Análisis de Flujo de Caja - 8 Viviendas Mampostería Estructural – Fuente: (Elaboración Propia)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>ETAPA PREVENTAS</th>
<th>ETAPA DE CONSTRUCCION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MES -3</td>
<td>MES -2</td>
</tr>
</tbody>
</table>

INGRESOS PROYECTO

1. INGRESOS

<table>
<thead>
<tr>
<th>N°</th>
<th>INGRESOS</th>
<th>MES 3</th>
<th>MES 2</th>
<th>MES 1</th>
<th>MES 0</th>
<th>MES 1</th>
<th>MES 2</th>
<th>MES 3</th>
<th>MES 4</th>
<th>MES 5</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Cuotas iniciales fideicomiso</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$216,250,000</td>
<td>$43,250,000</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$259,500,000</td>
</tr>
<tr>
<td>1.2</td>
<td>Subrogaciones créditos</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$605,500,000</td>
<td>$605,500,000</td>
</tr>
<tr>
<td>1.3</td>
<td>Capital de Trabajo</td>
<td>$21,406,169</td>
<td>$21,406,169</td>
<td>$21,406,169</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$64,218,506</td>
</tr>
<tr>
<td>1.4</td>
<td>Créditos</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$250,000,000</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$400,000,000</td>
</tr>
</tbody>
</table>

A. INGRESOS TOTALES | $21,406,169 | $21,406,169 | $21,406,169 | $466,250,000 | $43,250,000 | $150,000,000 | $0 | $0 | $605,500,000 | $1,329,218,506 |

EGRESOS PROYECTO

2. PRELIMINARES

<table>
<thead>
<tr>
<th>N°</th>
<th>PRELIMINARES</th>
<th>MES 3</th>
<th>MES 2</th>
<th>MES 1</th>
<th>MES 0</th>
<th>MES 1</th>
<th>MES 2</th>
<th>MES 3</th>
<th>MES 4</th>
<th>MES 5</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Lote</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$100,000,000</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$100,000,000</td>
</tr>
<tr>
<td>2.2</td>
<td>Diseños, Comercialización y Ventas</td>
<td>$21,406,169</td>
<td>$21,406,169</td>
<td>$21,406,169</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$64,218,506</td>
</tr>
</tbody>
</table>

B. TOTAL PRELIMINARES | $21,406,169 | $21,406,169 | $21,406,169 | $100,000,000 | $- | $- | $- | $- | $- | $164,218,506 |

3. COSTOS DIRECTOS

<table>
<thead>
<tr>
<th>N°</th>
<th>COSTOS DIRECTOS</th>
<th>MES 3</th>
<th>MES 2</th>
<th>MES 1</th>
<th>MES 0</th>
<th>MES 1</th>
<th>MES 2</th>
<th>MES 3</th>
<th>MES 4</th>
<th>MES 5</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>TOTAL COSTOS DIRECTOS</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$58,633,222</td>
<td>$58,633,222</td>
<td>$58,633,222</td>
<td>$58,633,222</td>
<td>$58,633,222</td>
<td>$293,166,112</td>
<td></td>
</tr>
</tbody>
</table>

4. COSTOS INDIRECTOS

<table>
<thead>
<tr>
<th>N°</th>
<th>COSTOS INDIRECTOS</th>
<th>MES 3</th>
<th>MES 2</th>
<th>MES 1</th>
<th>MES 0</th>
<th>MES 1</th>
<th>MES 2</th>
<th>MES 3</th>
<th>MES 4</th>
<th>MES 5</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>TOTAL COSTOS INDIRECTOS</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$47,140,800</td>
<td>$47,140,800</td>
<td>$47,140,800</td>
<td>$47,140,800</td>
<td>$47,140,800</td>
<td>$235,704,000</td>
<td></td>
</tr>
</tbody>
</table>

E. TOTAL COSTOS INDIRECTOS | $- | $- | $- | $47,140,800 | $47,140,800 | $47,140,800 | $47,140,800 | $47,140,800 | $235,704,000 |

5. DEVOLOUCIÓN DE CAPITAL

<table>
<thead>
<tr>
<th>N°</th>
<th>DEVOLOUCIÓN DE CAPITAL</th>
<th>MES 3</th>
<th>MES 2</th>
<th>MES 1</th>
<th>MES 0</th>
<th>MES 1</th>
<th>MES 2</th>
<th>MES 3</th>
<th>MES 4</th>
<th>MES 5</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>TOTAL DEVOLOUCIÓN DE CAPITAL</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$21,406,169</td>
<td>$21,406,169</td>
<td></td>
</tr>
</tbody>
</table>

J. TOTAL DEVOLOUCIÓN DE CREDITO | $- | $- | $- | $- | $- | $- | $- | $- | $400,000,000 | $400,000,000 |

6. COSTOS FINANCIEROS (7% EA)

<table>
<thead>
<tr>
<th>N°</th>
<th>COSTOS FINANCIEROS (7% EA)</th>
<th>MES 3</th>
<th>MES 2</th>
<th>MES 1</th>
<th>MES 0</th>
<th>MES 1</th>
<th>MES 2</th>
<th>MES 3</th>
<th>MES 4</th>
<th>MES 5</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>TOTAL COSTOS FINANCIEROS</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$1,413,536</td>
<td>$1,413,536</td>
<td>$2,261,658</td>
<td>$2,261,658</td>
<td>$2,261,658</td>
<td>$9,612,047</td>
</tr>
</tbody>
</table>

FLUJO DE CAJA MENSUAL (A - I) | $0 | $0 | $0 | $260,475,978 | $-63,937,559 | $42,812,441 | $-100,035,681 | $-129,441,849 | $-160,426,005 | $162,299,335 |

FLUJO DE CAJA ACUMULADA | $0 | $0 | $0 | $260,475,978 | $196,538,419 | $239,350,860 | $131,315,180 | $1,873,330 | $162,299,335 | $162,299,335 |
Bajo los mismos supuesto y como un resumen sencillo de los flujos del proyecto se crearon análisis económico verticales en cada caso, en lo que mostramos los resultados de nuestro análisis del Light Steel Framing y de la mampostería estructural.

<table>
<thead>
<tr>
<th></th>
<th>Predio</th>
<th>Construccion</th>
<th>Honorarios y Comisiones</th>
<th>Gastos Generales</th>
<th>Ingresos</th>
<th>Utilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$miles/m2</td>
<td>m2</td>
<td>$mill</td>
<td>Indice Sobre Ventas</td>
<td>$miles/m2</td>
<td>m2</td>
</tr>
<tr>
<td>Lote</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 100.00</td>
<td></td>
</tr>
<tr>
<td>Construccion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costos Directos: Viviendas</td>
<td></td>
<td></td>
<td>692</td>
<td></td>
<td>$ 329.09</td>
<td></td>
</tr>
<tr>
<td>Costos Indirectos (Administracion, Herramientas, Dotaciones, etc)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 78.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 407.34</td>
<td></td>
</tr>
<tr>
<td>Estudios y Diseños</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 20.37</td>
<td></td>
</tr>
<tr>
<td>Honorarios y Comisiones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 129.75</td>
<td></td>
</tr>
<tr>
<td>Publicidad y Mercadeo (2%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 17.30</td>
<td></td>
</tr>
<tr>
<td>Comision de Ventas (3%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 25.95</td>
<td></td>
</tr>
<tr>
<td>Gestion Y Gerencia de Promotores (10%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 86.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 129.75</td>
<td></td>
</tr>
<tr>
<td>Fidecomiso/Legales/Org/Impuestos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 23</td>
<td></td>
</tr>
<tr>
<td>Financieros*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 5.82</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 28.82</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 5.82</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 28.82</td>
<td></td>
</tr>
</tbody>
</table>

| | | | | | $ 865.00 | | 100% | |
| | | | | | $ 178.72 | | 21% | |

* Credito por $350 durante 3 meses a una tasa 7 % EA

Figura 42. Análisis económico LSF
Fuente: (Elaboración Propia)
Al final del análisis obtenemos que los costos financieros asociados al proyecto de las 8 viviendas construidas por medio de light steel framing son de $5.823.770 mientras que con mampostería estructural $9.612.047. En conclusión con el sistema light Steel Framing obtendríamos una reducción del 39%.

En el mismo orden, con el análisis económico obtenemos que el sistema light steel framing tiene una utilidad neta de $178.723.609 mientras con mampostería estructural
$162,299,335, lo que significaría que el LSF tendría un 10% más de utilidad frente al proyecto en mampostería estructural.

Por último presentamos unas distribuciones finales de costos para ambos proyectos en donde se puede apreciar porcentajes de incidencia en costos de los diferentes aspectos tenidos en cuenta, Los resultados se presentan en la Figura 44 y Figura 45. Por medio de estos gráficos se procede a realizar un análisis de dichas distribuciones.
Como resultado final obtenemos que los costos directos del proyecto en light steel framing tienen una incidencia del 48% sobre los costos totales del proyecto, mientras que en la mampostería estructural representa el 42%, este resultado está directamente relacionado con el aumento de costos directos por parte del sistema LSF presentado anteriormente en los resultados.

Así mismo los costos indirectos del sistema light steel framing representan un 11% de los costos totales del proyecto, mientras que en la mampostería estructural tienen una incidencia del 18%, observamos en este punto la importancia de la duración del proyecto para que los costos indirectos representen un porcentaje menor durante el proyecto.

Los costos financieros en ambos casos representan un 1%, a pesar que como se menciono anteriormente el LSF tiene un 39% menos de costos financieros, el resultado de dicho costos en el proyecto evaluado tiene una incidencia pequeña.

Con respecto a los demás aspectos tenidos en cuenta ambos proyectos mantienen casi los mismos porcentajes de incidencia sobre los costos totales.
Se concluye que a pesar que el sistema light steel framing tiene unos costos directos mayores, que la obra se desarrolle en un tiempo menor ayuda a que este sistema sea competitivo ante los sistemas tradicionales en viviendas y además se puedan obtener márgenes de utilidad mayores.
7. Análisis Masificación Sistema Constructivo

La masificación de este sistema constructivo podría acarrear ventajas significativa en los costos directos, dado que en Colombia se usan grados bajos de acero mientras que en otros países donde el sistema LSF es comúnmente utilizado, los perfiles son fabricados con grados de aceros mayores obteniendo ventajas en resistencia. Adicionalmente, la variedad de perfiles en cuanto a calibres es limitada debido a la baja demanda lo que influye directamente en unos diseños estructurales limitados.

Los fabricantes locales de perfiles de acero galvanizado en Colombia trabajan con acero grado 33. En los países extranjeros donde el uso del light steel framing es mayor y muy común utilizan acero grado 50, dado que tiene una mayor resistencia y sus costos de producción varían poco con respecto al grado 33.

Basados en la anterior afirmación, como parte del proyecto investigativo se analizó las ventajas que podría tener sobre los costos directos del light steel framing utilizar acero grado 50, para esto se analizaron los perfiles de entrepiso y muros del proyecto de 8 viviendas objeto de este proyecto investigativo. A continuación encontramos los resultados:

Entrepiso

En el diseño estructural utilizado para el análisis comparativo de las casas el sistema de entrepiso estaba compuesto por dos perfiles S1504118 dispuestos “espalda con espalda” como anteriormente se ha mencionado perfiles elaborados con un acero grado 33, en este caso se evalúa la alternativa de un solo perfil S1504116 de mayor espesor y producido con acero grado 50, obteniendo a continuación el siguiente resultado:
Tabla 35. Análisis Uso de Acero Grado 50 - Entrepisos - Fuente: (Elaboración Propia)

<table>
<thead>
<tr>
<th>ELEMENTO</th>
<th>TIPO PERFIL</th>
<th>PESO PERFIL (Kg/ml)</th>
<th>PESO ENTREPISO (Kg/m2)</th>
<th>VALOR UNITARIO ($/ML)</th>
<th>VALOR POR M2</th>
<th>AHORRO ($/M2)</th>
<th>AHORRO (KG/M2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIGUETA</td>
<td>S1504118 [CADA 0.407 m Grado 33]</td>
<td>2.39</td>
<td>13.11</td>
<td>$9,633</td>
<td>$52,841</td>
<td>24%</td>
<td>31%</td>
</tr>
<tr>
<td>VIGUETA</td>
<td>S1504116 [CADA 0.407 m Grado 50]</td>
<td>2.99</td>
<td>9.06</td>
<td>$13,245</td>
<td>$40,112</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Obtenemos que con la alternativa evaluada se podría alcanzar en el entrepiso un ahorro de hasta el 24% en el costo directo de la estructura de entrepiso y un ahorro de hasta el 31% del peso de la estructura de entrepiso.

Muros

Para los muros se evaluó la ventaja que produciría bajar un espesor en los perfiles y subir el grado del acero a utilizar, por eso para los muros de primer piso en donde se tenían perfiles S894116 en acero G33 se evaluó la alternativa de perfiles S894118 en acero G50. En los muros de segundo y tercer piso en donde se tienen perfiles S894118 en acero Grado G33, se evalúa la alternativa de uso de perfiles S894119 en acero G50, es importante aclarar que el perfil S894119 cuyo espesor es de 1 mm no es un producto común del mercado actual. A continuación se presentan los resultados obtenidos:

Tabla 36. Análisis Uso de Acero Grado 50 - Muros Primer Piso - Fuente: (Elaboración Propia)

<table>
<thead>
<tr>
<th>ELEMENTO</th>
<th>TIPO PERFIL</th>
<th>PESO ML</th>
<th>PESO ENTREPISO (Kg/m2)</th>
<th>VALOR UNITARIO ($/ML)</th>
<th>VALOR POR M2</th>
<th>AHORRO ($/M2)</th>
<th>AHORRO (KG/M2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ER PISO</td>
<td>S894116 [CADA 0.407 m Grado 33]</td>
<td>2.14</td>
<td>8.95</td>
<td>$9,031</td>
<td>$37,760</td>
<td>12%</td>
<td>20%</td>
</tr>
<tr>
<td>1ER PISO</td>
<td>S894118 [CADA 0.407 m Grado 50]</td>
<td>1.71</td>
<td>7.15</td>
<td>$7,966</td>
<td>$33,307</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Como se observa en la Tabla 36. Para los muros compartidos del primer piso de las casas se podría llegar a obtener un ahorro del 12% en los costos directos de los perfiles de la estructura de muros, y un 20% menos del peso de la estructura de muros.

Tabla 37. Análisis Uso de Acero Grado 50 - Muros Segundo Piso - Fuente: (Elaboración Propia)

<table>
<thead>
<tr>
<th>ELEMENTO</th>
<th>TIPO PERFIL</th>
<th>PESO ML</th>
<th>PESO ENTREPISEO (Kg/m2)</th>
<th>VALOR UNITARIO ($/ML)</th>
<th>VALOR POR M2</th>
<th>AHORRO ($/M2)</th>
<th>AHORRO (KG/M2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2DO PISO</td>
<td>S894118 [CADA 0.407 m grado 33</td>
<td>1.71</td>
<td>7.15</td>
<td>$7,225</td>
<td>$30,209</td>
<td>9%</td>
<td>18%</td>
</tr>
<tr>
<td>2DO PISO</td>
<td>S894119 [CADA 0.407 m grado 50</td>
<td>1.41</td>
<td>5.90</td>
<td>$6,592</td>
<td>$27,562</td>
<td>9%</td>
<td>18%</td>
</tr>
</tbody>
</table>

Tabla 38. Análisis Uso de Acero Grado 50 - Muros Segundo Piso - Fuente: (Elaboración Propia)

<table>
<thead>
<tr>
<th>ELEMENTO</th>
<th>TIPO PERFIL</th>
<th>PESO ML</th>
<th>PESO ENTREPISEO (Kg/m2)</th>
<th>VALOR UNITARIO ($/ML)</th>
<th>VALOR ($/M2)</th>
<th>AHORRO ($/M2)</th>
<th>AHORRO (KG/M2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3ER PISO</td>
<td>S894118 [CADA 0.407 m grado 33</td>
<td>1.71</td>
<td>7.15</td>
<td>$7,225</td>
<td>$30,209</td>
<td>9%</td>
<td>18%</td>
</tr>
<tr>
<td>3ER PISO</td>
<td>S894119 [CADA 0.407 m grado 50</td>
<td>1.41</td>
<td>5.90</td>
<td>$6,592</td>
<td>$27,562</td>
<td>9%</td>
<td>18%</td>
</tr>
</tbody>
</table>

En la Tabla 37 y Tabla 38 encontramos los resultados para los muros del segundo y tercer nivel, se obtuvo una reducción del 9% en los costos directos asociados a los perfiles estructurales de los muros, y una reducción del 18% en el peso de la estructura.

Basados en todos los resultados anteriormente presentado, se procedió a analizar el peso total de la estructura y sus costos si la materia prima fuera cambiada por Acero grado 50.
Obteniendo así la Tabla 39 y Tabla 40 en donde se presentan en análisis de pesos y de costos directos respectivamente.

Tabla 39. Peso total Estructura Metálica LSF – Uso Acero Grado 50. (Fuente: Elaboración Propia)

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>PERFIL</th>
<th>PERFIL ML</th>
<th>PESO KG/ML</th>
<th>PESO TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUROS PRIMER PISO</td>
<td>s894118</td>
<td>493</td>
<td>1.71</td>
<td>843.03</td>
</tr>
<tr>
<td>MUROS PRIMER PISO</td>
<td>s894119</td>
<td>2486</td>
<td>1.41</td>
<td>3505.26</td>
</tr>
<tr>
<td>REFUERZOS PRIMER PISO</td>
<td>s894118</td>
<td>39.44</td>
<td>1.71</td>
<td>67.4424</td>
</tr>
<tr>
<td>MUROS SEGUNDO PISO</td>
<td>s894118</td>
<td>2474</td>
<td>1.41</td>
<td>3488.34</td>
</tr>
<tr>
<td>REFUERZOS SEGUNDO PISO</td>
<td>s894118</td>
<td>197.92</td>
<td>1.41</td>
<td>279.0672</td>
</tr>
<tr>
<td>MUROS TERCER PISO</td>
<td>s894118</td>
<td>2719</td>
<td>1.41</td>
<td>3833.79</td>
</tr>
<tr>
<td>REFUERZOS TERCER PISO</td>
<td>s894118</td>
<td>217.52</td>
<td>1.41</td>
<td>306.7032</td>
</tr>
<tr>
<td>ENTREPISO 2DO PISO</td>
<td>S1504116</td>
<td>648</td>
<td>2.99</td>
<td>1937.52</td>
</tr>
<tr>
<td>REFUERZOS ENTREPISO 2</td>
<td>S1504116</td>
<td>51.84</td>
<td>2.99</td>
<td>155.0016</td>
</tr>
<tr>
<td>ENTREPISO TERCER PISO</td>
<td>S1504116</td>
<td>648</td>
<td>2.99</td>
<td>1937.52</td>
</tr>
<tr>
<td>REFUERZOS ENTREPISO 3</td>
<td>S1504116</td>
<td>51.84</td>
<td>2.99</td>
<td>155.0016</td>
</tr>
<tr>
<td>CUBIERTA</td>
<td>s894116</td>
<td>300</td>
<td>2.14</td>
<td>642</td>
</tr>
<tr>
<td>REFUERZOS CUBIERTA</td>
<td>s894116</td>
<td>24</td>
<td>2.14</td>
<td>51.36</td>
</tr>
<tr>
<td>ESCALERA 1 A 2DO PISO</td>
<td>s894120</td>
<td>575</td>
<td>1.21</td>
<td>695.75</td>
</tr>
<tr>
<td>ESCALERA 2 A 3ER PISO</td>
<td>s894120</td>
<td>575</td>
<td>1.21</td>
<td>695.75</td>
</tr>
</tbody>
</table>

TOTAL PESO ESTRUCTURA (KG) 18593.5
TOTAL PESO ESTRUCTURA (KG/M2) 26.87

Si las especificaciones de la materia prima utilizada cambiara de acero grado 33 a acero grado 50 solamente en los muros y entrepisos que fueron los elementos evaluados en el análisis, llegaríamos a tener un peso para la misma estructura de 18.5 Ton, lo que equivaldría para nuestro proyecto a un peso de 26.7 Kg/m2. Dichos resultados al ser comparados con los
obtenidos en la Tabla 3 donde presentamos los pesos de la estructura con el diseño original en acero grado 33, obtenemos una reducción de aproximadamente 22% en el peso total de la estructura. Adicionalmente, si comparamos este resultado con los rangos mencionado en el dossier informativo sobre Light Steel Framing de la empresa consultora RATI0N:ING. (S.L, 2010) donde se presentan valores de entre 24 y 30 Kg acero / m2 edificación, obtenemos que este sistema se volvería más competitivo y entraría en los rangos de los estándares aquí mencionados.

Tabla 40. Costos Directos Capítulo Estructuras - Uso Acero G 50 (Fuente: Elaboración Propia)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPCIÓN</th>
<th>UNIDAD DE MEDIDA</th>
<th>CANTIDADES</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ESTRUCTURA</td>
<td></td>
<td></td>
<td></td>
<td>$121,460,802</td>
</tr>
<tr>
<td>3.1</td>
<td>ENTREPISOS</td>
<td></td>
<td></td>
<td></td>
<td>$30,728,325</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Entrepiso Perfiles S1504116</td>
<td>m2</td>
<td>387.63</td>
<td>$79,272</td>
<td>$30,728,325</td>
</tr>
<tr>
<td></td>
<td>Perfiles S1504116</td>
<td>ml</td>
<td>1296.00</td>
<td>$13,245</td>
<td>$17,165,520</td>
</tr>
<tr>
<td></td>
<td>Refuerzo de Entrepiso Perfiles S1504116</td>
<td>ml</td>
<td>207.36</td>
<td>$9,633</td>
<td>$1,997,566</td>
</tr>
<tr>
<td></td>
<td>Conexiones</td>
<td>%</td>
<td>0.13</td>
<td>$17,165,520</td>
<td>$2,157,372</td>
</tr>
<tr>
<td></td>
<td>Tornillería</td>
<td>%</td>
<td>0.09</td>
<td>$17,165,520</td>
<td>$1,566,026</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Estructural 4-1</td>
<td>Hc</td>
<td>172.28</td>
<td>$45,518</td>
<td>$7,841,841</td>
</tr>
<tr>
<td>3.2</td>
<td>MUROS ESTRUCTURALES</td>
<td></td>
<td></td>
<td></td>
<td>$82,856,325</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Muros Primer Piso Perfiles S894118</td>
<td>m2</td>
<td>107.23</td>
<td>$63,837</td>
<td>$6,845,273</td>
</tr>
<tr>
<td></td>
<td>Perfiles S894118</td>
<td>ml</td>
<td>493.00</td>
<td>$7,966</td>
<td>$3,927,238</td>
</tr>
<tr>
<td></td>
<td>Refuerzos Perfiles S894118</td>
<td>ml</td>
<td>39.44</td>
<td>$7,966</td>
<td>$314,179</td>
</tr>
<tr>
<td></td>
<td>Conexiones Muros Primer Piso</td>
<td>% (perfiles)</td>
<td>0.01</td>
<td>$3,927,238</td>
<td>$63,660</td>
</tr>
<tr>
<td></td>
<td>Anclajes Sísmico Primer Piso</td>
<td>% (perfiles)</td>
<td>0.20</td>
<td>$3,927,238</td>
<td>$872,229</td>
</tr>
<tr>
<td></td>
<td>Tornillería</td>
<td>% (perfiles)</td>
<td>0.07</td>
<td>$3,927,238</td>
<td>$330,193</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Estructural 3-1</td>
<td>Hc</td>
<td>29.39</td>
<td>$45,518</td>
<td>$1,337,774</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Muros Primer Piso Perfiles S894119</td>
<td>m2</td>
<td>301.37</td>
<td>$82,513</td>
<td>$24,867,078</td>
</tr>
</tbody>
</table>
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.

Jose Luis Lamus R. - 200914262

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPCIÓN</th>
<th>UNIDAD DE MEDIDA</th>
<th>CANTIDADES</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Perfiles S894119</td>
<td>ml</td>
<td>2486.00</td>
<td>$6,592</td>
<td>$16,387,712</td>
</tr>
<tr>
<td></td>
<td>Conexiones Muros Primer Piso</td>
<td>%(perfiles)</td>
<td>0.02</td>
<td>$16,387,712</td>
<td>$321,028</td>
</tr>
<tr>
<td></td>
<td>Anclajes Sísmico Primer Piso</td>
<td>%(perfiles)</td>
<td>0.27</td>
<td>$16,387,712</td>
<td>$4,398,551</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Estructural 3-1</td>
<td>Hc</td>
<td>82.60</td>
<td>$45,518</td>
<td>$3,759,787</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Muros Segundo Piso Perfiles S894119</td>
<td>m2</td>
<td>392.88</td>
<td>$61,339</td>
<td>$24,098,939</td>
</tr>
<tr>
<td></td>
<td>Perfiles S894119</td>
<td>ml</td>
<td>2474.00</td>
<td>$6,592</td>
<td>$16,308,608</td>
</tr>
<tr>
<td></td>
<td>Refuerzos Perfiles S894119</td>
<td>ml</td>
<td>197.92</td>
<td>$6,592</td>
<td>$1,304,689</td>
</tr>
<tr>
<td></td>
<td>Conexiones Muros Segundo Piso</td>
<td>%(perfiles)</td>
<td>0.09</td>
<td>$16,308,608</td>
<td>$1,544,368</td>
</tr>
<tr>
<td></td>
<td>Tornillería</td>
<td>%(perfiles)</td>
<td>0.07</td>
<td>$16,308,608</td>
<td>$1,176,936</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Estructural 3-1</td>
<td>Hc</td>
<td>82.70</td>
<td>$45,518</td>
<td>$3,764,339</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Muros Tercer Piso Perfiles S894118</td>
<td>m2</td>
<td>466.18</td>
<td>$58,014</td>
<td>$27,045,035</td>
</tr>
<tr>
<td></td>
<td>Perfiles S894118</td>
<td>ml</td>
<td>2719.00</td>
<td>$6,592</td>
<td>$17,923,648</td>
</tr>
<tr>
<td></td>
<td>Refuerzos Perfiles S894118</td>
<td>ml</td>
<td>217.52</td>
<td>$6,592</td>
<td>$1,433,892</td>
</tr>
<tr>
<td></td>
<td>Conexiones Muros Tercer Piso</td>
<td>%(perfiles)</td>
<td>0.09</td>
<td>$17,923,648</td>
<td>$1,697,307</td>
</tr>
<tr>
<td></td>
<td>Tornillería</td>
<td>%(perfiles)</td>
<td>0.08</td>
<td>$17,923,648</td>
<td>$1,472,982</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Estructural 3-1</td>
<td>Hc</td>
<td>99.24</td>
<td>$45,518</td>
<td>$4,517,206</td>
</tr>
<tr>
<td>3.3</td>
<td>ESCALERAS</td>
<td></td>
<td></td>
<td></td>
<td>$7,876,152</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Escalera Perfiles S894120</td>
<td>Und</td>
<td>16.00</td>
<td>$492,260</td>
<td>$7,876,152</td>
</tr>
<tr>
<td></td>
<td>Perfiles S894120</td>
<td>ml</td>
<td>1150.00</td>
<td>$5,312</td>
<td>$6,109,369</td>
</tr>
<tr>
<td></td>
<td>Conexiones</td>
<td>%(perfiles)</td>
<td>0.08</td>
<td>$6,109,369</td>
<td>$468,479</td>
</tr>
<tr>
<td></td>
<td>Cuadrilla Estructural 1-1</td>
<td>Hc</td>
<td>64.00</td>
<td>$20,286</td>
<td>$1,298,304</td>
</tr>
</tbody>
</table>

Como resultado obtenemos que el costo directo de la estructura sería de $121.460.802 al comparar con el valor presentado en la Tabla 12 de $136.338.461 obtenemos una reducción del 11% con respecto al uso de acero grado 33.
8. Análisis Normativo

En Colombia las normas de diseños están regidas por la NSR-10, en el caso de estructuras metálicas en el Título F, capítulo F.4 se definen las normas por las cuales se deben diseñar los perfiles que hacen parte de estructuras de acero conformado en frío.

El Título A de la NSR-10 donde se estipulan todos los requisitos generales de diseño y construcción sismo resistente en Colombia, se proporcionan las bases para el cálculo de las cargas laterales o fuerzas sísmicas las cuales son reducidas por el coeficiente de capacidad de disipación de energía R, el cual corresponde a cada sistema estructural. Teniendo así una fuerza sísmica reducida de diseño de:

Ecuación 1. Fuerzas sísmicas Reducidas de diseño

\[E = \frac{F_s}{R} \]

Donde:

\(E \) = Fuerza sísmica Reducida de diseño
\(F_s \) = Fuerza sísmica Calculada
\(R \) = Coeficiente de capacidad de disipación de energía. \(R = \phi_p \phi_a \phi_r R_0 \)

El coeficiente de disipación de energía para cada sistema estructural esta dado por la ecuación \(R = \phi_p \phi_a \phi_r R_0 \), donde \(\phi_p \) es una reducción por las irregularidades en planta, \(\phi_a \) una reducción por irregularidades en altura y \(\phi_r \) por irregularidades de redundancia. El valor de \(R_0 \) esta estipulado de acuerdo a cada sistema estructural y se hallan en las tablas A.3-1 a la A.3-3.

De igual forma para elementos como conexiones se tiene un coeficiente de sobre resistencia \(\Omega_0 \) el cual es usado para el calculo de la fuerza sísmica de diseño de acuerdo a la siguiente ecuación:

Ecuación 2. Fuerzas sísmicas Amplificadas por Sobre Resistencia

\[E = \frac{\Omega_0 F_s}{R} \pm 0.5 A_a F_a D \]
Análisis de viabilidad Económica: Sistema Constructivo Light Steel Framing en Colombia.

Jose Luis Lamus R. - 200914262

Donde:

Ω₀ = Coeficiente de sobre resistencia

Fs = Fuerza sísmica calculada

R = Coeficiente de capacidad de disipación de energía

Aa = Coeficiente aceleración horizontal pico efectiva

Fa = Coeficiente de amplificación que afecta la aceleración en la zona de períodos cortos

D = Carga Muerta Sobre elemento

Como se puede observar el valor de R y Ω₀ resulta indispensable para un diseño óptimo. En el título A en las tablas A.3-1 a la A.3-3 se establecen cada uno de los Ro y Ω₀ para los respectivos sistemas constructivos de acuerdo a su comportamiento sísmico ya evaluado, en estas tablas actualmente no se puede encontrar el sistema constructivo del light steel framing, dado que es muy poca su utilización y conocimiento en Colombia, es por tanto que los valores a usar de Ro están limitados a este inciso A.3.1.7 el cual dice lo siguiente:

A.3.1.7 — SISTEMAS ESTRUCTURALES DE RESISTENCIA SÍSMICA PREFABRICADOS — Pueden construirse edificaciones cuyo sistema de resistencia sísmica esté compuesto por elementos prefabricados. El sistema prefabricado debe diseñarse para las fuerzas sísmicas obtenidas de acuerdo con este Reglamento usando un coeficiente de capacidad de disipación de energía básico, tal como lo define el Capítulo A.13 igual a uno y medio \(R₀ = 1.5 \). Cuando se demuestre con evidencia experimental y de análisis, que el sistema propuesto tiene una resistencia, capacidad de disipación de energía y capacidad de trabajo en el rango inelástico igual o mayor a las obtenidas con la estructura construida utilizando uno de los materiales prescritos por este Reglamento, deben cumplirse los requisitos de los Artículos 10 y 12 de la Ley 400 de 1997, pero en ningún caso el valor de \(R₀ \) podrá ser mayor que el fijado por el presente Reglamento para sistemas de resistencia sísmica construidos monolíticamente con el mismo material estructural. Al respecto debe consultarse A.1.4.2.

Figura 46. Inciso A.3.1.7 Título A NSR-10

Fuente: (Comision Asesora Permanente para el Regimen de la Construcciones Sismo Resistente, 2010)

Como el light steel framing no esta definido dentro de los sistemas estructurales del código en el Título A mas especificamente en la Tabla A.3 solo se puede usar un Ro que vaya entre 1.0 y 1.5, siendo un valor R igual a 1.0 para sistemas constructivos que no se conoce su comportamiento estructural y un R igual a 1.5 como se observa en la Figura 46 para sistemas estructurales prefabricados.
Por otro lado, los códigos americanos en los cuales están basadas nuestra norma sismo resistente, si contemplan estos valores para sistemas construidos a partir de acero galvanizado; teniendo en el código de la AISI S213-07/S-09 en la tabla C1-1 del código los sistemas constructivos con sus respectivos coeficientes los cuales hacen referencia a el light steel framing, estos códigos a su vez son traídos de la ASCE 7 código americano en el cual se encuentra la normativa de todos los sistemas de construcción en acero.

<table>
<thead>
<tr>
<th>Basic Seismic Force-Resisting System</th>
<th>Seismic Response Modification Coefficient, R</th>
<th>System Overstrength Factor, (\Omega_s)</th>
<th>Deflection Amplification Factor, (\Omega_e)</th>
<th>Structural System Limitations and Building Height (ft) Limitations *</th>
<th>Seismic Design Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. BEARING WALL SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A&B C D E F</td>
</tr>
<tr>
<td>Light-framed walls sheathed with wood structural panels rated for shear resistance or steel sheets</td>
<td>6 1/2</td>
<td>3</td>
<td>4</td>
<td>NL</td>
<td>NL 65 65 65</td>
</tr>
<tr>
<td>Light-framed walls with shear panels of all other materials</td>
<td>2</td>
<td>2 1/2</td>
<td>2</td>
<td>NL</td>
<td>NL 35 NP NP</td>
</tr>
<tr>
<td>Light-framed wall systems using flat strap bracing</td>
<td>4</td>
<td>2</td>
<td>3 1/2</td>
<td>NL</td>
<td>NL 65 65 65</td>
</tr>
<tr>
<td>B. BUILDING FRAME SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light-framed walls sheathed with wood structural panels rated for shear resistance or steel sheets</td>
<td>7</td>
<td>2 1/2</td>
<td>4 1/2</td>
<td>NL</td>
<td>NL 65 65 65</td>
</tr>
<tr>
<td>Light-framed walls with shear panels of all other materials</td>
<td>2 1/2</td>
<td>2 1/2</td>
<td>2 1/2</td>
<td>NL</td>
<td>NL 35 NP NP</td>
</tr>
<tr>
<td>R. STEEL SYSTEMS NOT SPECIFICALLY DETAILED FOR SEISMIC RESISTANCE, EXCLUDING CANTILEVER COLUMN SYSTEMS</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>NL</td>
<td>NL NP NP NP</td>
</tr>
</tbody>
</table>

Figura 47. Tabla C1-1 - Coeficientes \(R \) y \(\Omega \) para LSF
Fuente: (American Iron and Steel Institute, 2010)

Como se puede observar para sistemas estructurales cuyos componentes son elementos en con acero galvanizado se cuenta con coeficientes de \(R \) y \(\Omega \) estipulados, lo que permite tener
un mejor conocimiento del comportamiento estructural y de esta forma poder encontrar las cargas optimas de diseño lateral.

En el caso de el sistema estructural de entramado de perfiles galvanizados formados en frio galvanizados se obtienen Ro= 4 y Ωo = 2, para la clasificación anteriormente mostrada.

Si bien la NSR-10 en el Titulo F en su capitulo 4, presenta una descripción de los elementos estructurales y no estructurales en acero conformado en frio, donde se exponen las características y normas para las dimensiones y resistencias de estos elementos. Y a pesar que específicamente en el capítulo F.4.4.4 en el inciso e se menciona que: “Los muros de corte para entramados livianos, arriostramiento mediante bandas diagonales (elementos que son parte del muro estructural) y diafragmas para resistir viento, sismo y otras cargas laterales en su propio plano, se diseñaran de acuerdo con AISI S213” de donde obtuvimos la clasificación anteriormente mencionada. La ausencia en el Titulo A del valor de los factores necesarios para el calculo de las fuerzas laterales y limites de altura para este sistema estructural en función de la zona de riesgo sísmico hace que mucho ingenieros crean que no se puede diseñar este tipo de estructuras.

Se realizo una consulta con Coordinador del Departamento de Ingeniería Civil de la curaduría 3 el ingeniero Jose Joaquín Álvarez a cerca de la viabilizacion o aprobación de proyectos con el sistema LSF en las curadurías nacionales. Quien manifestó que no se tenia conocimiento de alguna licencia de construcción entregada a un proyecto LSF, de la misma manera se dieron las directrices que se deberian tomar actualmente si se quiere realizar un proyecto con este sistema; se debe solicitar la homologación del sistema estructural ante la Comisión Asesora sismo Resistentes a través de la Asociación de Ingeniería Sísmica, AIS, así como se establece en la ley 400 de 1997 en sus articulos 12, 13 y 14 mencionados a continuación:

“Artículo 12º.- Sistemas prefabricados. Se permite el uso de sistemas de resistencia sísmicas que estén compuestos, total o parcialmente, por elementos prefabricados que no se encuentren contemplados en esta ley, siempre y cuando cumplan con uno de los procedimientos siguientes:

1. Utilizar los criterios de diseño sísmico presentados en el Título A de la reglamentación, de
conformidad con lo dispuesto en el artículo 46 de esta Ley.

2. Obtener autorización previa de la "Comisión Asesora Permanente para el Régimen de Construcciones Sismo Resistentes", de conformidad con lo dispuesto en el artículo 14, que le permita su utilización, la cual no exime del régimen de responsabilidades establecido en la presente Ley y sus reglamentos.

 Artículo 13º.- Otros sistemas, metodologías o materiales. Cualquier sistema de diseño y construcción que haga referencia al objeto de esta Ley y sus reglamentos, del cual exista evidencia obtenida por uso, análisis o experimentación de que está capacitado para cumplir sus propósitos pero no reúne uno o más requisitos específicos de la ley y sus reglamentos, podrá presentarse ante la dependencia distrital o municipal a cargo de la expedición de las licencias de construcción, acompañado de una autorización de la "Comisión Asesora permanente para el Régimen de Construcciones Sismo Resistentes", de acuerdo con lo dispuesto en el artículo 14, la cual no exime del régimen de responsabilidades establecido en la presente Ley y sus reglamentos."

 Artículo 14º.- Conceptos de la "Comisión Asesora Permanente para el Régimen de Construcciones Sismo Resistentes". Con base en la evidencia presentada sobre la idoneidad del sistema de resistencia sísmica y del alcance propuesto para su utilización, la "Comisión Asesora Permanente para el Régimen de Construcciones Sismo Resistentes", emitirá un concepto sobre el uso de materiales, métodos y sistemas comprendidos en esta Ley y sus reglamentos."

Que el sistema estructural no se encuentre claramente dentro de la normativa que regula el diseño estructural en el país, tiene gran parte que ver con el desconocimiento del mismo. Basados en encuestas del año 2014 (Mayorga, Perez, & Ramirez, 2014) el 55% de los profesionales encuestados no conocen nada acerca del sistema Light Steel Framing, y adicionalmente del 45% restante que dijo conocer el sistema el 63% no maneja las normas para dicho sistema. Es por tanto que la inclusión de este sistema en las tablas A.3 es indispensable para que el sistema pueda volverse mas conocido por los profesionales del área.

Actualmente existe una solicitud de clasificación y calificación estructural del sistema constructivo de muros de corte para entramados livianos con arriostramiento mediante
bandas diagonales con miembros de acero formado en frío por parte del ingeniero estructural Carlos A. Mendoza, pidiendo ante la Comisión Asesora Permanente para el Régimen de Construcciones Sismo Resistentes - Asociación Colombiana de Ingeniería Sísmica, básicamente la inclusión del LSF en las tablas A.3 con el fin de tener claridad de diseños ante los entes revisores. en la Tabla 41.

Tabla 41. Propuesta de inclusión en Tablas A.3 - Fuente: (Carlos A. Mendoza, 2015)

<table>
<thead>
<tr>
<th>Sistema Resistencia Sísmica (fuentes horizontales)</th>
<th>Sistema Resistencia para cargos Verticales</th>
<th>Zonas de amenaza sísmica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema de Muros de Corte para enfriados livianos con arriostramiento mediante bandas diagonales con miembros de acero formado en frío</td>
<td>El mismo</td>
<td>Alta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Es importante que el comité haga las validaciones pertinentes y ajustes que sean necesarios para tener en cuenta esta solicitud. Adicionalmente, es necesario no solo estudiar la posibilidad de inclusión del sistema con este arriostramiento si no en todos sus formas estructurales; así como, en combinaciones con otros sistemas estructurales.

Esto resultaría muy importante para la optimización de los diseños estructurales del sistema, para asegurar que se estén realizando los diseños bajo las normas que se deben, de igual forma podría traer beneficios que harían al sistema más competitivo en el mercado nacional, dado que es posible que actualmente los proyectos que se quieran llevar a cabo con este sistema se sobre diseñen por no tener un concepto claro del diseño.
Con el desarrollo de la investigación anteriormente mostrada se llega a las siguientes conclusiones y recomendaciones:

El peso propio de los materiales usados en el Light Steel Framing es más ligero que en los sistemas tradicionales, teniendo de esta forma una reducción en la estructura de cimentación con respecto a los demás sistemas. Esta reducción es más significativa a medida que las estructuras son más complejas y de mayor altura; principalmente en suelos de baja capacidad portante.

El sistema actualmente es competitivo ante los sistemas tradicionales, en el análisis comparativo se encontró que a pesar que los costos directos son mayores, específicamente en un 12%, al analizar los tiempo de construcción se estima que el LSF se construiría un 39% más rápido, asociado a esto se tienen unos costos indirectos menores así como unos costos financieros menores, lo que hace que después de realizado el análisis financiero se obtenga un 10% más de utilidad con el proyecto en Light Steel Framing con respecto a la mampostería estructural.

Se concluye que para hacer que el sistema sea mucho más competitivo ante sistemas tradicionales es importante una masificación y conocimiento de dicho sistema, dado que con un mayor requerimiento de materia prima se puede producir perfiles en acero grado 50, lo cual puede traer ahorros en promedio del 11% en los costos directos estructura del sistema LSF y una reducción de 22% en el peso de la estructura, haciendo el sistema más competitivo y más ligero al punto de llegar a obtener estructuras en los mismos márgenes internacionales. Adicionalmente se pueden aumentar la oferta de perfiles e cuanto a calibres lo que permitirá unos diseños menos limitados que ayudarían a la optimización del sistema.

El conocimiento del sistema LSF en Colombia es muy poco, lo que dificulta su masificación es por tanto que es primordial implementar e incluir en nuestra normas técnicas al sistema Light Steel Framing para que el área profesional de ingeniería del país se comience a identificar con este sistema que esta siendo implementado en todo el mundo. Por tanto, es recomendable que
la Asociación Colombiana de Ingeniería Sísmica tenga en cuenta todas las solicitudes en este ámbito con la respectivas validaciones pertinentes, ya que como es de conocimiento nuestras normas están basadas en las americanas, en las cuales sí se encuentran contemplado el sistema Light Steel Framing, trayendo beneficios para la industria de la construcción.
10. Referencias Bibliográficas

- American Iron and Steel Institute. (2010). AISI S110-07/S1-09(2012). In A. I. Institute, **AISI STANDARD**.
- Construdata. (2013). **¿Como se Construye en Colombia?**
- Steel Framing Alliance. (2008). **Steel And the Enviroment**.
- Matecsa S.A. (2013). **Maestro de Precios - Perfiles Construcción Liviana.**
Anexos

Anexo 1. Estudio de Suelos
Anexo 2. Planos Estructurales - Mampostería Estructural
Anexo 3. Memorias de Calculo - Mampostería Estructural
Anexo 4. Diseño estructural Light - Steel Framing.
Anexo 5. Diseño de Cimentación - Light Steel Framing.
Anexo 6. Presupuesto Costos Directos - Light Steel Framing.
Anexo 7. Presupuesto Costos Directos – Mampostería Estructural