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Abstract

The subject of this document is the interaction between topological K-theory and Clif-
ford Algebras in the specific context of K-orientations. Both K-theory and Clifford
Algebras are very interesting topics by themselves. The former has been used, for in-
stance, to solve the problem of the maximum number of independent vector fields that
a sphere admits. More recently, topological K-theory has came up in the discussion
of topological order in solid state physics. On the other hand, Clifford Algebras are
deeply rooted in quantum mechanics through Dirac’s equation and the notion of spin.
However, what’s more astonishing about them is not their individual virtues, but the
fact that they are deeply connected. As we shall see, Atiyah-Bott-Shapiro’s construc-
tion establishes a powerful link between them, which we are going to explode to talk
about K-orientations.

This text is divided in three chapters. The first one discusses the basic definitions and
results related to Clifford Algebras. The twisted adjoint representation, the groups
Pin and Spin and their complex analogues are introduced. We carry on a complete
classification of a specific class of Clifford algebras, their irreducible representations
and their graded modules. Finally, we discuss the graded rings A∗ and Ac∗.

The second chapter is on vector bundles. We study them from the beginning, giving all
the basic definitions and describing ways to build new vector bundles from old ones.
Also, we give a survey of results which will be used later on.

The last chapter is on K-theory. Again, all the basic definitions and results are given.
Specifically, we show the existence of long exact sequences and Mayer-Vietoris se-
quences. We show how to construct classes in K-theory from exact sequences of vector
bundles and finally apply all of these results into the subject of K-orientations.
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Chapter 1

Clifford Algebras and their
Representations

In this chapter, we study Clifford Algebras in detail. We start with the definition and
basic properties of these algebras and then we discuss the twisted adjoint representa-
tion which gives rise to the Pin and Spin subgroups. Next, we study the classification
and periodicity of Clifford algebras and the structure of their representations. We will
be following references [5] and [2].

1.1 Definitions and periodicity

1.1.1 Quadratic forms

Definition 1. A quadratic form q on Rn is a function q : Rn → R of the form

q (v) = vTAv

for some symmetric matrix A ∈Mn×n (R).

Associated to any quadratic form there is a bi-linear one q (·, ·) : Rn×Rn → R given by

q (v, w) = vTAw

Since A is symmetric, q (v, w) is symmetric too. Also, q (v, v) = q (v). Moreover, q (v, w)

can be described as the polarization of q:

q (v, w) =
1

2
(q (v + w)− q (v)− q (w))

3



4 Chapter 1. Clifford Algebras and their Representations

Indeed,

q (v, w) =
1

2

[
(v + w)T A (v + w)− vTAv − wTAw

]
=

1

2

[
vTAv + vTAw + wTAv + wTAw − vTAv − wTAw

]
=

1

2

[
vTAw + wTAv

]
= vTAw

Two vectors v, w ∈ Rn are called q-orthogonal if q (v, w) = 0. Now, it is a well known
fact from Linear Algebra that, since A is symmetric, it can be diagonalized. In other
words, there exists a basis β = {vi}i=1,...,n for V such that vi and vj are q-orthogonal if
i 6= j.

We say q is non-degenerate if there exists a q-orthogonal basis β = {vi}i=1,...,n such that
q (vi) 6= 0 for i = 1, . . . , n. From now on, we will always assume q is non-degenerate.
In that case, we can further replace vi by vi√

q(vi)
or vi√

−q(vi)
, whichever makes sense,

in order to get a basis of q-orthogonal vectors for which q (vi) is either 1 or −1. This
discussion shows that for all practical purposes, we can always assume A is diagonal
with entries 1 or −1. We call a basis like β a q-orthonormal basis.

1.1.2 Clifford Algebras

Definition 2. Inside the tensor algebra of V = Rn, T V , let Iq be the two-sided ideal generated
by elements of the form v⊗v+1·q (v). The Clifford Algebra associated to V and q is the quotient
algebra

Cl (V, q) = T V/Iq

In a sense, Definition 2 reminds us of the definition of the exterior algebra. The differ-
ence is that for Clifford Algebras v ·v = −q (v), whereas for the exterior algebra v ·v = 0.
Although this difference changes the multiplicative structure, as the following theorem
shows, the vector space structure remains the same.

Theorem 1. The algebras Cl (V, q) and
∧∗ V are canonically isomorphic as vector spaces.

Proof. Consider the map T from T V to Cl(V, q) given by

T (v1 ⊗ · · · ⊗ vk) =
1

k!

∑
σ∈Sk

(−1)deg σ vσ(1) · · · · · vσ(k) (1.1)
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First of all, T factors as T V
A→ T V

π→ Cl (V, q) where A is the map from T V to itself
defined by the equation

A (v1 ⊗ · · · ⊗ vk) =
1

k!

∑
σ∈Sk

(−1)deg σ vσ(1) ⊗ · · · ⊗ vσ(k) (1.2)

and π is just the canonical projection. Now, A2 = A. Moreover, when we restrict A to
the k-th tensor power of V , T kV , the image of A|T kV is isomorphic to the k-th exterior
product of V ,

∧k V . In fact, if i denotes this isomorphism, the diagram

T kV
πA−→

∧k V

A ↘ ↙i

Im (A)

where πA is just the restriction of the canonical projection from T V to
∧∗ V . So, we

can think of T as factoring through T V
πA−→
∧∗ V π◦i−→ Cl (V, q).

Let us show that π◦i is injective. Suppose θ ∈
∧∗ V is in the kernel. Since the projection

πA is surjective, θ = πA (Θ) for some Θ ∈ T kV . Then Θ is in the kernel of π ◦ i ◦ πA =

π ◦A. By definition of Cl (V, q) we must have

A (Θ) =
∑
i∈I

αi ⊗ (vi ⊗ vi + q (vi))⊗ βi (1.3)

for some finite set of indexes I , some tensors αi, βi ∈ T V which we can consider pure
and some vectors vi ∈ V . Let J be the subset of I consisting of those indexes j for which
degαj + deg βj is maximal. Clearly the forms of higher degree in A (Θ) are precisely∑

j∈J αj ⊗ vj ⊗ vj ⊗ βj . Let’s call that degree n. Now, from 1.3 it follows that

A2 (Θ) = A

(∑
i∈I

αi ⊗ (vi ⊗ vi + q (vi))⊗ βi

)
=

∑
i∈I

A (αi ⊗ vi ⊗ vi ⊗ βi) +
∑
i∈I

q (vi)A (αi ⊗ βi)

=
∑
i∈I

q (vi)A (αi ⊗ βi)

since evidently A (αi ⊗ vi ⊗ vi ⊗ βi) = 0. But A2 = A, so

A2 (Θ) = A (Θ) =
∑
i∈I

αi ⊗ (vi ⊗ vi + q (vi))⊗ βi

Which can be truth only if
∑

i∈I αi ⊗ vi ⊗ vi ⊗ βi = 0. These terms must vanish degree
by degree, so in particular we must have

∑
j∈J αj ⊗ vj ⊗ vj ⊗ βj = 0. So, A (Θ) must be

made of form of degree lesser than n.

Our hypothesis isA (Θ) ∈ Iq so that it is in the kernel of π. But
∑

i∈I αi⊗vi⊗vi⊗βi = 0



6 Chapter 1. Clifford Algebras and their Representations

so
∑

i∈I q (vi)αi ⊗ βi, which is made of forms of degree lesser than n, must belong to
Iq. Then, we must have∑

i∈I
q (vi)αi ⊗ βi =

∑
i∈Î

α̂i ⊗ (v̂i ⊗ v̂i + q (v̂i))⊗ β̂i

for some new Î , α̂i, β̂i and v̂i. We can now repeat the same argument to conclude that
A (Θ) is of degree lesser than n− 1. If we keep repeating this process we conclude that
A (Θ) = θ = 0. Thus, π ◦ i is injective.

Now, let us show that π ◦ i is surjective. Notice two things. First, πA restricted to the
copy of V inside T V is just the identity, so the injectivity of π ◦ i means that we have a
copy of V inside Cl (V, q). Second, this copy actually generates Cl (V, q). Indeed, every
element φ ∈ T V can be written as

φ =
∑
i∈I

vi,1 ⊗ vi,2 ⊗ · · · ⊗ vi,ni

and π is surjective and a homomorphism of algebras so for every element ϕ ∈ Cl (V, q)
there exists a φ such that ϕ = π (φ). So we must have

ϕ =
∑
i∈I

vi,1 · vi,2 · · · · · vi,ni

where · denotes multiplication in Cl (V, q).

The discussion on the preceding paragraph shows that any sub-algebra of Cl (V, q) that
contains the copy of V inside Cl (V, q) must be the entire Cl (V, q). But the image under
π ◦ i of

∧∗ V is one such sub-algebra. We conclude that π ◦ i is onto.

Usually, when we have a construction like the one in Definition 2, there is an associ-
ated universal property. In the proof of Theorem 1, we mentioned that there is a copy
of V inside Cl (V, q), so it makes sense to talk about extending maps from V to Cl (V, q).

Proposition 1. Let A be a unital algebra over R and let f be a linear map from f : V → A

such that
f (v) · f (v) = −1 · q (v)

Then there exists a unique algebra homomorphism f̂ : Cl (V, q) → A such that f̂
∣∣∣
V

= f .
Moreover, Cl (V, q) is the unique algebra with that property.

Proof. Since f is a linear map from V into an algebra, it extends in a unique way to an
homomorphism of algebras f̃ : T V → A. Clearly, Iq is in the kernel of this map, so f̃
induces a map f̂ : Cl (V, q)→ A.
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As we mentioned in the proof of Theorem 1, every element ϕ ∈ Cl (V, q) must be of the
form

ϕ =
∑
i∈I

vi,1 · vi.2 · · · · · vi,ni

where · denotes multiplication in Cl (V, q). Hence, if f̂ is any homomorphism of alge-
bras from Cl (V, q) into A, we must have

f̂ (ϕ) = f̂

(∑
i∈I

vi,1 · vi.2 · · · · · vi,ni

)
=

∑
i∈I

f̂ (vi,1 · vi.2 · · · · · vi,ni)

=
∑
i∈I

f̂ (vi,1) · f̂ (vi,2) · · · · · f̂ (vi,ni)

=
∑
i∈I

f (vi,1) · f (vi,2) · · · · · f (vi,ni)

which shows f̂ is completely determined by f and so must be unique.

That Cl (V, q) is the unique algebra with this property follows from the traditional ar-
guments.

Corollary 1. Let T : V → V be a linear map such that q (T (v)) = q (v) for all v ∈ V . Then,
T extends uniquely to an algebra homomorphism T̂ : Cl (V, q)→ Cl (V, q).

Proof. If i : V ↪→ Cl (V, q) denotes the inclusion of V into Cl (V, q), then i ◦ T is a linear
map from V into Cl (V, q). Also,

(i ◦ T (v)) · (i ◦ T (v)) = v · v = −q (v)

so by Proposition 1, i ◦ T extends uniquely to a map T̂ : Cl (V, q)→ Cl (V, q).

Corollary 2. Let T, S : V → V be two linear maps that preserve the quadratic form. By
Corollary 1, T ◦ S extends to ˆT ◦ S : Cl (V, q)→ Cl (V, q). We have ˆT ◦ S = T̂ ◦ Ŝ.

Proof. The map T̂ ◦ Ŝ is an algebra homomorphism from Cl (V, q) into itself that re-
stricts to T ◦ V on the copy of V in Cl (V, q), so by the uniqueness of the extension in
Proposition 1, the result follows.

Remark 1. We mentioned at the end of the previous section that we can choose a basis β =

{ei}1≤i≤n for V made of q-orthonormal vectors. For that basis the following identity holds:

ei · ej + ej · ei = −2δijq (ei)
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Indeed, it is obvious for i = j and for i 6= j

0 = q (ei, ej) = q (ei + ej)− q (ei)− q (ej)

= − (ei + ej) · (ei + ej) + ei · ei + ej · ej
= −ei · ei − ej · ej − ei · ej − ej · ei + ei · ei + ej · ej
= −ei · ej − ej · ei

Graded Structure Consider the map α : V → V that consists of multiplying by −1.
Since q (−v) = q (v), it preserves the quadratic form, so by Corollary 1 it extends to an
automorphism α̂ : Cl (V, q)→ Cl (V, q). Now, α2 = IdV . By Corollary 2, α̂2 = IdCl(V,q).
So, α̂ is diagonalizable and has eigenvalues 1 and −1, with eigenspaces Cl0 (V, q) and
Cl1 (V, q) respectively. The map α induces a decomposition of Cl (V, q) as a vector
space:

Cl (V, q) = Cl0 (V, q)⊕ Cl1 (V, q)

Additionally, since α̂ is an algebra homomorphism, it easy to check that Cli (V, q) ·
Clj (V, q) ⊂ Cli+j (V, q) where the sum of the indexes is taken mod 2. Note further
that only Cl0 (V, q) is a sub-algebra. Also, Cl0 (V, q) can be though of as those elements
in Cl (V, q) generated exclusively by sums of forms each of which is a product of an
even number of elements on V , whereas Cl1 (V, q) is the same but for an odd number
of vectors. For that reason, Cl0 (V, q) is called the even part of Cl (V, q), while Cl1 (V, q)

is referred to as the odd part.

1.2 Representations and modules of Clifford Algebras

1.2.1 The twisted adjoint representation

Some of the most important concepts related to Clifford Algebras, such as the groups
Pin and Spin, have to do with the twisted adjoint representation, so let’s study it now.
Let Cl× the group of invertible elements in Cl (V, q).

Definition 3. The twisted adjoint representation ofCl× is the map Ãd : Cl× → End (Cl (V, q))

given by the following rule: if ϕ ∈ Cl× and θ ∈ Cl (V, q), Ãdϕ (θ) = α̂ (ϕ) θϕ−1.

One initial remark is that for v, w ∈ V , q (v) 6= 0, we can give a more explicit formula
for Ãdv (w). Indeed, since α (v) = −v for all v ∈ V , we have

Ãdv (w) = −v · w · v

−q (v)
= − [(v + w) · (v + w)− v · v − w · w − w · v] · v

−q (v)

= − [−2q (v, w)− w · v] · v

−q (v)
= −2q (v, w)

q (v)
v + w
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where q (v, w) = (v + w) · (v + w)− v2 −w2 is the polarization of q. From this formula,
we can say a couple of things. We put the first one as a Remark for future reference:
Remark 2. Ãdv (w) is the reflection with respect to a plane q-orthogonal to v, multiplied by a
minus sign.

Second, it’s clear that Ãdv (V ) ⊂ V . Moreover, the quadratic form is also preserved:

q
(
Ãdv (w)

)
= q

(
w − 2q (v, w)

q (v)
v

)
= −

(
w − 2q (v, w)

q (v)
v

)
·
(
w − 2q (v, w)

q (v)
v

)
= −

[
w2 − 2q (v, w)

q (v)
(v · w + w · v) +

(
2q (v, w)

q (v)

)2

v2

]

= −

[
w2 +

(2q (v, w))2

q (v)
+

(
2q (v, w)

q (v)

)2

v2

]
= q (w)

Let us call P (V, q) the subgroup of elements ϕ ∈ Cl× (V, q) such that Ãdϕ (V ) ⊂ V .
Then Ãd becomes a representation of P (V, q) into Aut (V ). The previous calculation
shows vectors v ∈ V such that q (v) 6= 0 belong to P (V, q).

Later on, the fact stated in the next proposition about the twisted adjoint representa-
tion will turn out to be very important. Before discussing it, it should be mentioned
that R× ⊂ P (V, q). Indeed, for any r ∈ R× and any v ∈ V such that q (v) 6= 0,
r = (rv) ·

(
v

−q(v)

)
.

Proposition 2. The kernel of Ãd : P (V, q)→ Aut (V ) is R×.

Proof. Suppose ϕ ∈ ker Ãd. That means Ãdϕ = IdV or in other words that α (ϕ) vϕ−1 =

v for all v ∈ V . Equivalently α (ϕ) v = vϕ. Now, as we discussed in the previous
section, ϕ can be written in a unique way as ϕ = ϕ0 + ϕ1, where ϕi ∈ Cli (V, q). Hence

α (ϕ) = α (ϕ0) + α (ϕ1) = ϕ0 − ϕ1

that means
ϕ0v − ϕ1v = vϕ0 + vϕ1

Equating the even and odd parts, we conclude ϕ0v = vϕ0 and −ϕ1v = vϕ1.

As the closing remarks of the previous section showed, we can choose a basis β =

{ei}1≤i≤n for V made of q-orthonormal vectors. In the proof of Proposition 1, we men-
tioned that every element of Cl (V, q), in particular ϕ0 and ϕ1, can be written as

ϕ0 =
∑
i∈I

v0
i,1 · v0

i.2 · · · · · v0
i,ni

ϕ1 =
∑
i∈I

v1
i,1 · v1

i.2 · · · · · v1
i,ni
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for some vji,k ∈ V . By further expanding each vector in terms of the basis β, we can
rewrite

ϕ0 = a0 + e1a1

ϕ1 = ã0 + e1ã1

where a0, a1, ã0 and ã1 are pure elements of Cl (V, q) and e1 doesn’t appear in any of
them. Notice that a0, ã0 must be even forms, whereas a1, ã1 must be odd, so in view
of Remark 1, e1 commutes with a0 and ã0 but anti-commutes with a1 and ã1. Now, we
have ϕ0v = vϕ0, so if we take v = e1:

(a0 + e1a1) e1 = e1 (a0 + e1a1)

a0e1 + e1a1e1 = e1a0 + e2
1a1

e1a0 − e2
1a1 = e1a0 + e2

1a1

We deduce a1 = 0. That means e1 doesn’t appear in ϕ0. We can repeat the same
process for e2, e3, etc, deducing every time that ei doesn’t appear in ϕ0. So, we must
have ϕ0 ∈ F. Using the same kind of argument, it also follows that ϕ1 ∈ R. Hence,
ϕ ∈ R. Since ϕ ∈ Ãd ⊂ P (V, q) ⊂ Cl× (V, q), ϕ 6= 0, so ϕ ∈ R×.

The subgroups Pin, Pinc, Spin and Spinc.

On the tensor algebra of V , T V , we can define an operation of transposition given by

∗t : T V → T V

v1 ⊗ v2 ⊗ · · · ⊗ vn → vn ⊗ · · · ⊗ v2 ⊗ v1

This operation preserves Iq, so it descends toCl (V, q). Also, it is an anti-automorphism,
since clearly (αβ)t = βtαt for all α and β in Cl (V, q).

For any ϕ ∈ Cl (V, q), let N (ϕ) = ϕ ·α
(
ϕt
)
. We have the following pair of results about

N :

Proposition 3. If ϕ ∈ P (V, q), N (ϕ) ∈ R×.

Proof. For any v ∈ V α (ϕ) vϕ−1 ∈ V , so

[
α (ϕ) vϕ−1

]t
= α (ϕ) vϕ−1.

On the other hand

[
α (ϕ) vϕ−1

]t
=

(
ϕ−1

)t
vα (ϕ)t

=
(
ϕt
)−1

vα
(
ϕt
)
,
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since it’s easy to see that α (ϕ)t = α
(
ϕt
)

and
(
ϕ−1

)t
=
(
ϕt
)−1. Comparing both expres-

sions, we get

α (ϕ) vϕ−1 =
(
ϕt
)−1

vα
(
ϕt
)

ϕtα (ϕ) vϕ−1α
((
ϕ−1

)t)
= v

α
(
α
(
ϕt
)
ϕ
)
vϕ−1α

((
ϕ−1

)t)
= v. (1.4)

Finally, if we knew α
(
ϕt
)
ϕ ∈ P (V, q), we could conclude the proof by noticing that

the left hand side of equation 1.4 is Ãdα(ϕt)ϕv. So, what 1.4 is telling us is that α
(
ϕt
)
ϕ

is in the kernel of Ãd and by Proposition 2, the result would follow. But this is easy to
check. First of all, ϕt ∈ P (V, q). Indeed, for any v ∈ V ,

α
(
ϕt
)
v
(
ϕt
)−1

= α (ϕ)t v
(
ϕ−1

)t
=
[
ϕ−1vα (ϕ)

]t
= −

[
α
(
α
(
ϕ−1

)
vϕ
)]t

= −
[
α
(
Ãdϕ−1v

)]t
.

But ϕ−1 ∈ P (V, q) because P (V, q) is a subgroup. Since both α and ∗t preserve the

vector space,−
[
α
(
Ãdϕ−1v

)]t
∈ V . We conclude that ϕt ∈ P (V, q). On the other hand,

for any θ ∈ P (V, q), α (θ) ∈ P (V, q) because

α (α (θ)) vα (θ)−1 = −α
(
α (θ) vθ−1

)
∈ V

In conclusion, ϕt ∈ P (V, q) so α
(
ϕt
)
∈ P (V, q) and hence α

(
ϕt
)
ϕ ∈ P (V, q).

Proposition 4. N is an homomorphism of groups from P (V, q) to R×. Also, N (α (x)) =

N (x).

Proof. Let θ, ϕ ∈ P (V, q). Then

N (θϕ) = θϕα
(
(θϕ)t

)
= θϕα

(
ϕtθt

)
= θϕα

(
ϕt
)
α
(
θt
)

Now, by Proposition 3 ϕα
(
ϕt
)
∈ R×, so it commutes with every element of Cl (V, q),

in particular with α
(
θt
)
. So

N (θϕ) = θα
(
θt
)
ϕα
(
ϕt
)

= N (θ)N
(
ϕt
)
.

On the other hand,

N (α (x)) = α (x)α
(
[α (x)]t

)
= α

(
xα
(
xt
))

= α (N (x)) = N (x) .



12 Chapter 1. Clifford Algebras and their Representations

Proposition 5. For all ϕ ∈ P (V, q) and v ∈ V , q
(
Ãdϕv

)
= q (v). In other words, Ãd maps

P (V, q) into O (V, q).

Proof. Notice that for every v ∈ V , N (v) = α (v) vt = −vvt = q (v), so

q
(
Ãdϕv

)
= N

(
Ãdϕv

)
= N

(
α (ϕ) vϕ−1

)
= N (α (ϕ))N

(
ϕ−1

)
N (v) .

Since N (α (ϕ)) = N (ϕ), q
(
Ãdϕv

)
= N (v) = q (v).

The group Pin (V, q) is defined as the kernel of N . The group Spin (V, q) is defined
as Pin (V, q) ∩ Cl0 (V, q). Now, in Proposition 5 we proved that Ãd sends P (V, q) to
O (V, q). We might wonder how Ãd looks like when restricted to Pin (V, q). The an-
swer is in the following Proposition.

Proposition 6. The following sequences are exact:

0 → {1,−1} → Pin (V, q)
Ãd→ O (V, q)→ 0

0 → {1,−1} → Spin (V, q)
Ãd→ SO (V, q)→ 0

Proof. First of all, let us show that Ãd restricted to Pin (V, q) is surjective onto O (V, q).
Notice that every vector v ∈ V with q (v) = 1 belongs to Pin (V, q), since N (v) = q (v)

for v ∈ V . As it was proved in Remark 2, for those elements Ãdv is just a reflection with
respect to a q-orthogonal plane. A classical theorem due to Dieudonné and Cartan
(See Theorem 7.2.1 in [3]) states that O (V, q) is generated by such reflections, so the
result follows. Additionally, SO (V, q) must be the subgroup of O (V, q) generated by
an even number of such reflections, because each one of them has determinant −1. So
Ãd restricted to Spin (V, q) is surjective onto SO (V, q).

The fact that the kernel of Ãd is {1,−1} follows from Proposition 2.

Let us consider now the complexified algebras Cl (V, q)⊗ C. We can extend the defini-
tions of α and ∗t:

α (ϕ⊗ z) = α (ϕ)⊗ z

(ϕ⊗ z)t = ϕt ⊗ z̄.

Let’s call P c (V, q) the subgroup of invertible elements ϕ inCl (V, q)⊗C such that for ev-
ery v ∈ V , α (ϕ) vϕ−1 ∈ V . Then the entire discussion from Remark 2 up to Proposition
5 follows through changing C by R. We define Pinc as the kernel of N : P c (V, q)→ C×

and Spinc ⊂ Pin as the pre-image under Ãd of SO (V, q). Then the analogous of Propo-
sition 6 is:
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Proposition 7. The following sequences are exact:

0 → U (1)→ Pinc (V, q)
Ãd→ O (V, q)→ 0

0 → U (1)→ Spinc (V, q)
Ãd→ SO (V, q)→ 0

1.2.2 Clifford Modules

Classification of Cl

As we shall see later on, it turns out that most applications of the concepts we’ve been
developing so far have to do with modules over Clifford Algebras, rather than with the
algebras themselves. That is the case for Bott periodicity and also for orientations in
K-theory. This may be partly because, as we will show in the following, we can give
an explicit description of the irreducible representations of these algebras.

Before we get to the main discussion, a couple of comments are in order. First, for
V = Rn and r, s ∈ N such that r+s = n, we denote by qr,s the quadratic form associated
to the matrix (

Ir×r 0

0 −Is×s

)
and we refer to Cl (Rn, qr,s) as Clr,s.

A second remark has to do with describing maps from Cl (V, q) to some other algebra.
According with Proposition 1, it suffices to define a linear map T from V into the al-
gebra in such a way that T (v) · T (v) = −q (v). It follows from Remark 1 that for a
q-orthogonal basis β = {ei}i=1,...n, a necessary condition would then be

T (ei)T (ej) + T (ej)T (ei) = −2δijq (ei)

since, as we saw in Remark 1, this condition follows from (ei + ej)·(ei + ej) = −q (ei + ej).
But it turns out this is also a sufficient condition. Indeed, for v =

∑
λiei:

T (v)T (v) = T

(∑
i

λiei

)
T

∑
j

λjei


=

∑
i

λ2
iT (ei)T (ei) + 2

∑
i 6=j

T (ei)T (ej) + T (ej)T (ei)

= −
∑
i

λ2
i q (ei) = −q (v) .

Finally, a word about tensor products. For the following discussion we will consider
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the tensor product of two Clifford Algebras Clr,s and Cln,m as an algebra, with multi-
plication given by

(φ1 ⊗ φ2) · (ϕ1 ⊗ ϕ2) = φ1 · ϕ1 ⊗ φ2ϕ2.

Having made this comments, we can get into the study of the algebras Clr,s and its
representations, specially the cases Cln,0. We will start by establishing isomorphims
between these algebras and classical matrix algebras, using an algorithm that is, in a
sense, recursive. The main idea of this algorithm is contained in the following Theorem.

Theorem 2. There exist the following algebra isomorphisms:

1. Clr+2,0
∼= Cl0,r ⊗ C2,0

2. Cl0,r+2
∼= Clr,0 ⊗ Cl0,2

3. Clr+1,s+1
∼= Clr.s ⊗ Cl1,1

Proof. We will show the first isomorphism only, the other two are completely analo-
gous. Let {ei}i=1,...,r be the standard basis for Cl0,r, {e′i}i=1,2 be the corresponding
basis for Cl2,0 and {e′′i }i=1,...,r the one for Clr+2,0. Consider the map

f : Rr+2 → Cl0,r ⊗ Cl2,0

e′′i 7→

ei ⊗ e′1 · e′2 i ≤ r

1⊗ e′i−r i = r + 1, r + 2.

For i, j ≤ r, we have

f
(
e′′i
)
· f
(
e′′j
)

+ f
(
e′′j
)
· f
(
e′′i
)

=
(
ei ⊗ e′1 · e′2

)
·
(
ej ⊗ e′1 · e′2

)
+
(
ej ⊗ e′1 · e′2

) (
ei ⊗ e′1 · e′2

)
=

(
ei · ej ⊗ e′1 · e′2 · e′1 · e′2

)
+
(
ej · ei ⊗ e′1 · e′2 · e′1 · e′2

)
= − (ei · ej + ej · ei)⊗ 1 = 2δij

The other cases are checked similarly. By the universal property, f induces a map
f̂ : Clr+2,0 → Cl0,r ⊗ C2,0.

Let us show that f̂ is onto. It’s easy to check that the set
{
ei ⊗ e′j

}
i,j

generates Cl0,r ⊗
Cl2,0. But, for i ≤ r, we have

f̂
(
e′′i · er+1

)
= f̂

(
e′′i
)
f̂ (er+1) =

(
ei ⊗ e′1 · e′2

)
·
(
1⊗ e′1

)
= −ei ⊗ e′2

f̂
(
e′′i · er+2

)
= f̂

(
e′′i
)
f̂ (er+2) =

(
ei ⊗ e′1 · e′2

)
·
(
1⊗ e′2

)
= −ei ⊗ e′1

which means that
{
ei ⊗ e′j

}
i,j

is in the image of f̂ . Hence f̂ must be onto.

By dimension count, f̂ must be an isomorphism.
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Corollary 3. We have the following algebra isomorphisms:

1. Cln+8,0
∼= Cln,0 ⊗ Cl8,0

2. Cl0,n+8
∼= Cl0,n ⊗ Cl0,8

Proof. We have

Cln+8,0
∼= Cl0,n+6 ⊗ Cl2,0 ∼= Cln+4,0 ⊗ Cl0,2 ⊗ Cl2,0 ∼= Cl0,n+2 ⊗ Cl2,0 ⊗ Cl0,2 ⊗ Cl2,0
∼= Cln,0 ⊗ Cl0,2 ⊗ Cl2,0 ⊗ Cl0,2 ⊗ Cl2,0 ∼= Cln,0 ⊗ Cl8,0

And similar for the second one.

Theorem 2 and Corollary 3 are almost everything we need to compute any Cln,0 or
Cl0,n. First of all, it tells us that it suffices to study the first 8 ones, since the structure is
the same from then on. Moreover, Theorem 2 can be used repeatedly to express any of
these 8 Clifford Algebras as a tensor product of Cl1,0, Cl0,1, Cl2,0 and Cl0,2. All that’s
left is for us to do is “calculating” these last five algebras and describing some rules to
compute tensor products. We have:

• The algebraCl1,0 is generated by two elements, 1 and e. Moreover, e·e = −q (e) =

−1. So Cl1,0 ∼= C.

• The algebra Cl2,0 has a basis with three elements: 1, i = e1, j = e2 and k = e1e2.
It’s easy to verify that i2 = j2 = k2 = −1 and ij = k, jk = i and ki = j. So,
Cl2,0 ∼= H.

• The algebra Cl0,2 has generators e1 and e2 for which the relation

eiej + ejei = 2δij (1.5)

holds. Let us define a map T : R2 →M2 (R) given by sending

e1 →

(
1 0

0 −1

)
e2 →

(
0 1

1 0

)
.

We can check directly that this definition preserves the relation 1.5, so it extends
to a map T̂ : R2 →M2 (R). Since

T̂ (1) =

(
1 0

0 1

)
T̂ (e1e2) =

(
1 0

0 −1

)(
0 1

1 0

)
=

(
0 1

−1 0

)
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and the matrices

β =

{(
1 0

0 1

)
,

(
1 0

0 −1

)
,

(
0 1

1 0

)
,

(
0 1

−1 0

)}

are a basis for M2 (R), T̂ is an isomorphism. So Cl0,2 ∼= M2 (R).

The case Cl0,1 is slightly more complicated. On R2, we can define a multiplication
according to

(a, b) · (c, d) = (ac, bd) .

We call R ⊕ R the algebra that has R2 as a vector space, endowed with this multipli-
cation. Now, let T : R → R ⊕ R the map that sends e, a unit element that gener-
ates R, to (1,−1). Since (1,−1) · (1,−1) = (1, 1), the unit of the algebra, T extends to
T̂ : Cl0,1 → R⊕ R. But (1, 1) and (1,−1) are a basis for R⊕ R, so T̂ is an isomorphism.
A completely analogous definition can be made for any other algebra instead of R.

Now that we’ve discussed the “irreducible” cases, we move on to the rules for calcu-
lating tensor products:

Theorem 3. For F = R,C,K, there exist the following real algebra isomorphisms.

1. Mn (R)⊗R Mm (R) ∼= Mnm (R)

2. Mn (R)⊗R F ∼= Mn (F)

3. C⊕ C ∼= C⊗R C

4. C⊗R H ∼= M2 (C)

5. H⊗R H ∼= M4 (R)

Proof. We can reinterpret the first isomorphism in the form

homR (Rn,Rn)⊗R homR (Rm,Rm) ∼= homR (Rn ⊗ Rm,Rn ⊗ Rm) .

Let us prove this last statement. We have a bi-linear map TP from homR (Rn,Rn) ×
homR (Rm,Rm) into homR (Rn ⊗ Rm,Rn ⊗ Rm) that takes a pair (T, S) into the map T⊗
S. The map T⊗S ∈ homR (Rn ⊗ Rm,Rn ⊗ Rm) is defined by the rule (T ⊗ S) (v ⊗ w) =

T (v)⊗S (w). Hence, TP induces a linear map ˜TP from homR (Rn,Rn)⊗RhomR (Rm,Rm)

into homR (Rn ⊗ Rm,Rn ⊗ Rm). We can check that this maps preserves the multiplica-
tive structure of homR (Rn,Rn) ⊗R homR (Rm,Rm): given two pairs (T, S) and (Q,R),
for any v ∈ Rn and w ∈ Rm, we have

[(T, S) · (Q,R)] (v ⊗ w) = (TQ, SR) (v ⊗ w) = TQ (v)⊗ SR (w)

= (T ⊗ S) (Q (v)⊗R (w))

= (T ⊗ S) (Q⊗R) (v ⊗ w) .
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n 1 2 3 4 5 6 7 8
Cln,0 C H H⊕H M2 (H) M4 (C) M8 (R) M8 (R)⊕M8 (R) M16 (R)

TABLE 1.1: Cln,0 and Cl0,n expressed as matrix algebras.

Thus, ˜TP is actually a map of algebras.

Let us show now that it is onto. If e1, . . . , en and u1, . . . , um are basis for Rn and Rm

respectively, the set {ei ⊗ uj}i=1,...n;j=1,...m is a basis for Rn ⊗ Rm. For i, k = 1, . . . .n,
j, l = 1, . . . ,m the maps T k,li,j : Rn⊗Rm → Rn⊗Rm defined by the rule T k,li,j

(
ei′ ⊗ uj′

)
=

δi,i′δj,j′ek ⊗ ul are a basis for homR (Rn ⊗ Rm,Rn ⊗ Rm). Let us call Rki the linear map
from Rn into itself defined by Rki (es) = δi,ses, and analogously the map Slj belongs to
homR (Rm,Rm). Clearly T k,li,j = Rki ⊗Slj , so T k,li,j is in the image of ˜TP . This is enough to
show ˜TP is onto. By dimension count, it must be an isomorphism.

Let’s move on to the second isomorphism. We have a bi-linear mar from Mn (R) × F
into Mn (F) given by sending the pair

(
(aij)i,j , k

)
to the matrix (kaij)i,j . It induces a

linear map from Mn (R) ⊗R F into Mn (F) which clearly preserves the multiplicative
structure. Now, if β = {ei} is a basis for F as a vector space over R, the matrices Aki′,j′ =(
ekδi′,iδj′,j

)
i,j

are a basis forMn (F). But clearlyAki′,j′ is the image of
((
δi′,iδj′,j

)
i,j
⊗ ek

)
.

So, the induced map is onto. By dimension count, it is an isomorphism.

The third isomorphism is given by the assignments

(1, 0) 7→ 1

2
(1⊗ 1 + i⊗ i)

(0, 1) 7→ 1

2
(1⊗ 1− i⊗ i) .

For the fourth isomorphism, we can see C2 as H . So, for z ∈ C and h ∈ H, we can
define a map from C2 into C2 by the rule v 7→ zvh̄. This is C-linear, so it establishes a
bi-linear map from C×H to M2 (C).

For the fifth, we see R4 as H and repeat the same process: given h, g ∈ H, we can define
a map R4 into itself by the rule v 7→ hvḡ. This is R-linear, so it establishes a bi-linear
map from H × H to M4 (R). Basic linear algebra shows that these last three maps are
indeed isomorphisms.

Example 1. Let us “calculate” Cl6,0:

Cl6,0 ∼= Cl0,4 ⊗ Cl2,0 ∼= Cl2,0 ⊗ Cl0,2 ⊗ Cl2,0 ∼= H⊗M2 (R)⊗H
∼= M4 (R)⊗M2 (R) ∼= M8 (R)

Proceeding similarly, we get Table 1.1.
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n 1 2
Cln C⊕ C M2 (C)

TABLE 1.2: Complex Clifford algebras.

The Complexified Clifford Algebras Table 1.1 is essentially everything we wanted
for F = R. Let us now consider the case F = C. That is, let us consider Cln,0 ⊗ C and
Cl0,n ⊗ C for some n, with some basis β = {e1, . . . , en}. The second case corresponds
to q (ei) = −1 for all i = 1, . . . , n. But then we could build a new basis β̂ = {ê1, . . . , ên}
with êi = iei. Since q (êi) = − (q (ei)) = 1, we see that Cln,0 ⊗ C and Cl0,n ⊗ C must be
isomorphic. We call the common algebra Cln.

Most of the arguments follow through:

Corollary 4. Cln+2
∼= Cln ⊗R Cl2

Proof. According to Theorem 2, Cln+2,0
∼= Cl0,n ⊗R Cl2,0. Taking tensor products with

C we get

Cln,0 ⊗R C ∼= Cl0,n ⊗R C⊗R Cl2,0 ⊗R C

Cln+2
∼= Cln ⊗R Cl2.

Notice that Corollary 4 plays the role of both Theorem 2 and Corollary 3: at the same
time it tells us how to compute higher dimensional complex Clifford Algebras and it
suggests that it suffices to consider Cl1 and Cl2. Using Proposition 1.1 and Theorem 3
we get Table 1.2.

Irreducible Modules For purposes that will become clear later on, we’re interested
in the irreducible representations of Clifford Algebras. Let us say a couple of words
about representations before we get into the specific subject that interests us.

Definition 4. Let A be a real algebra. A representation of A is a map of algebras R from A into
the set of linear maps of some real vector space E into itself. We say E is an A -module.

Two representations R : A → homF (E,E), S : A → homF

(
Ê, Ê

)
are said to be equivalent

if there exists a linear isomorphism L between E and Ê such that for every ϕ ∈ A and every
v ∈ E,

R [ϕ] (v) = L−1 ◦ S [ϕ] ◦ L (v) .

This definition of equivalence defines an equivalence relation on the set of representations of A.
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n 1 2 3 4 5 6 7 8
In Z Z Z⊕ Z Z Z Z Z⊕ Z Z

TABLE 1.3: Groups In

n 1 2
Jn Z Z⊕ Z

TABLE 1.4: Groups Jn

A representation R : A → homF (E,E) is said to be irreducible if there isn’t any subspace
E0 ⊂ E such that for every ϕ ∈ A, R [ϕ] (E0) ⊂ E0.

Roughly speaking, we want to know how many equivalence classes of irreducible rep-
resentations does an algebra Cln,0 have. We encode this information in the following
definition:

Definition 5. For every positive integer n, In is the free group generated by the equivalence
classes of irreducible representations of Cln,0. Jn is the analogue for Cln.

The key fact to calculate the groups In and Jn is contained in the following theorem:

Theorem 4. Let F = R,C or H. Then Mn (F) has a unique equivalence class of irreducible
representations, given by ρ, the natural representation over Fn. On the other hand, Mn (F) ⊕
Mn (F) has two equivalence classes, associated toρ1 (ϕ1 ⊕ ϕ2) = ρ (ϕ1) and ρ2 (ϕ1 ⊕ ϕ2) =

ρ (ϕ2).

Proof. See [4].

Tables 1.3 and 1.4 follow directly from Theorem 4 and Tables 1.1 and 1.2.

The Groups Ak

Although we have achieved a characterization of Clifford Algebras and their represen-
tations, for reasons that will become clear later on, we are interested in a particular
class of representations: graded ones. This will be the subject of this subsection.

Definition 6. Let V1 and V2 be two real vector spaces with quadratic forms q1, q2. From
their Clifford Algebras Cl (V1, q1) and Cl (V2, q2), we can build a third algebra called their
Twisted Tensor Product and denoted Cl (V1, q1) ⊗̂Cl (V2, q2). The vector space is given by
Cl (V1, q1) ⊗ Cl (V2, q2). For pure forms φ1, φ2 ∈ Cl (V1, q1) and ϕ1, ϕ2 ∈ Cl (V2, q2), we
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define their product as

(φ1 ⊗ ϕ1) · (φ2 ⊗ ϕ2) = (−1)deg φ2 φ1φ2 ⊗ ϕ1ϕ2

where deg φ2 = i if φ2 ∈ Cli (V1, q1).

The importance of twisted tensor products lies in the next Proposition. Before we state
it, let us make a small remark. Keeping the notation of Definition 6, we can define a
quadratic form q1⊕q2 on V1⊕V2 simply by declaring V1 and V2 to be q1⊕q2-orthogonal.
That is, for v1 ∈ V1, v2 ∈ V2, we define

(q1 ⊕ q2) (v1 + v2) = q1 (v1)⊕ q2 (v2)

Proposition 8. Cl (V1 ⊕ V2, q1 ⊕ q2) ∼= Cl (V1, q1) ⊗̂Cl (V2, q2)

Proof. Consider the map

T : V1 ⊕ V2 → Cl (V1, q1) ⊗̂Cl (V2, q2)

v1 ⊕ v2 → v1⊗̂1 + 1⊗̂v2.

We have

T (v1 ⊕ v2) · T (v1 ⊕ v2) =
(
v1⊗̂1 + 1⊗̂v2

)
·
(
v1⊗̂1 + 1⊗̂v2

)
= v1 · v1⊗̂1 + v1⊗̂v2 − v1⊗̂v2 + 1⊗̂v2 · v2

= −q (v1)− q (v2) = − (q1 ⊕ q2) (v1 ⊕ v2) .

That means T extends to a map T̂ from Cl (V1 ⊕ V2, q1 ⊕ q2) to Cl (V1, q1) ⊗̂Cl (V2, q2).
Let us show that it’s surjective. It’s easy to see that elements of the form v1⊗̂v2 generate
Cl (V1, q1) ⊗̂Cl (V2, q2), so it suffices to show that they are in the algebra generated by
the image of T . But that’s easy:

v1⊗̂v2 =
(
v1⊗̂1 + 1⊗̂0

)
·
(
1⊗̂0 + 1⊗̂v2

)
= T (v1 ⊕ 0) · T (0⊕ v2) .

Proposition 8 tells us that twisted tensor products are the correct way to build Clifford
algebras in higher dimensions using those in lower dimensions. In the following, we
will say a few words about how modules of higher dimensional Clifford Algebras in-
teract with modules of lower dimensional ones.

Definition 7. Let V a vector space with a quadratic form q. A graded module of Cl (V, q)
is a Cl (V, q)-module E that admits a vector space decomposition E = E0 ⊕ E1 such that if
ϕ ∈ Cli (V, q) and v ∈ Ej , ϕ · v ∈ Ei+j mod 2.
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k 1 2 3 4 5 6 7 8
Mk Z Z Z Z⊕ Z Z Z Z Z⊕ Z

TABLE 1.5: Groups Mk

k 1 2
Nk Z⊕ Z Z

TABLE 1.6: Groups Nk

We would like to give a classification of graded modules similar to the one developed in
the last section. The key fact in this process is described in the following Propositions:
Proposition 9. There is a one-to-one correspondence between graded modules of Cl (V, q) and
ungraded modules of Cl0 (V, q).

Proof. Let E be an ungraded Cl0 (V, q)-module. Then Ê = Cl (V, q) ×Cl0(V,q) E is a
graded Cl (V, q)-module with Ê0 = E and Ê1 = Cl1 (V, q) ×Cl0(V,q) E. On the other
hand, if F = F0 ⊕ F1 is a graded module, F0 is an ungraded Cl0 (V, q)-module. The
assignments E 7→ Ê and F 7→ F0 are inverses.

Proposition 10. Clr,s ∼= Cl0r+1,s

Proof. Let β = {e1, e2, . . . , er+s+1} be the canonical basis of Rr+s+1. Then

β̂ = {e1, e2, . . . , êr+1, . . . , er+s+1}

(the hat denotes omission of that vector) is a basis for Rr+s. Consider the map

f : Rr+s → Cl0r+1,s

defined on β̂ by the rule f (ei) = er+1ei for i = 1, . . . , r + s+ 1, i 6= r + 1. Then,

f (ei) f (ej) + f (ej) f (ei) = er+1eier+1ej + er+1ejer+1ei

= −er+1er+1eiej − er+1er+1ejei = eiej + ejei

so there is an extension f̂ : Clr,s → Cl0r+1,s. The map f̂ sends basis to basis, so it is an
isomorphism.

LetMk denote the free group generated by the irreducible graded modules of Clk,0 and
Nk denote the analogous for Clk. Then Tables 1.3 and 1.4, together with Propositions 9
and 9 give us Tables 1.5 and 1.6.
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Finally, we can make the definition that will be of most use for us later on. Con-
sider the inclusion i : Rn → Rn+1. If Rn is endowed with the quadratic form qn,0

and Rn+1 has qn+1, this inclusion preserves the quadratic form so it extends to a map
î : Cln,0 → Cln+1,0. Hence, its pullback gives a function i∗ : Mn+1 → Mn. We set
An ≡Mn/i

∗ (Mn+1). Similarly, we define Ack ≡ Nk/i
∗ (Nk+1). Now, all the information

we’ve gathered so far about Clifford modules allows us to compute almost at once all
the groups Ak and Ack. The only problematic cases are A4k and Ac2k.

Proposition 11. A4k
∼= Z, Ac2k ∼= Z.

Proof. From Table 1.3 we see that M4k
∼= Z ⊕ Z. In fact, Table 1.1 and Theorem 4

tell us that the two generators come from the two in-equivalent representations of
Mn (H) ⊕ Mn (H) or Mn (R) ⊕ Mn (R), call them x and y. Now consider the map
Mn (H) ⊕ Mn (H) → Mn (H) ⊕ Mn (H) that exchanges the order of the summands,
ie., sends (ϕ1, ϕ2) into (ϕ2, ϕ1). It follows from Theorem 4 that the pullback of this
map flips the generators of M4k. But M4k+1

∼= Z, so the image under i∗ of the genera-
tor of M4k+1, z, must be left invariant. Hence, by counting dimensions,we must have
z = x+ y and hence A4k = Z. The complex case is completely analogous.



Chapter 2

Vector Bundles

In this chapter, we will study vector bundles in detail. We will discuss the basic def-
initions and properties, as well as a series of results that will be useful when we start
considering K-theory in the next chapter. We will be mostly interested in complex
vector bundles over compact Hausdorff spaces.

2.1 Basic definitions

Definition 8. A vector bundle is a 4-tuple ξ = (E,X,F, π) where E and X are topological
spaces called the total and base space of the bundle respectively, π is a continuous surjective
map called the projection of the bundle and F is a (real or complex) finite dimensional vector
space referred to as the fiber of the bundle. Two conditions must hold for the triple:

• For each x ∈ X , π−1 (x) must have a vector space structure, linearly isomorphic to F .

• Local triviality: For each x ∈ X there exists an open set of X , U , that contains x and a
map

hU : U × F → π−1 (U)

that is an homeomorphism onto its image, for each x̃ ∈ U defines a linear isomorphism
hU |proj−1

1 (x) : F → π−1 (x) and makes the diagram

U × F hU−→ π−1 (U)

proj1 ↘ ↙π

U

commute.

A couple (U, hU ) is called a local trivialization of ξ, U is called a trivializing open set and hU a
trivializing map. A vector bundle is called trivial if there exists a local trivialization such that
the trivializing open set is X .

23
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Example 2. Consider the real projective space RPn. Let E be the subspace of RPn×Rn given
by

E = {([~v] , ~w) | ∃λ ∈ R : ~w = λ~v}

and X = RPn. Projection onto the first factor gives us a continuous, surjective mapping
π : E → X . From the definition of E it’s clear that the pre-images of π are one-dimensional
subspaces of Rn.

For the trivializations, let

Ui = {[a0, a1, . . . , an] ∈ RPn|ai 6= 0} i = 0, 1, . . . , n

Each element on Ui can be written in a unique way in the form [a0, . . . , 1, . . . an] where 1 is in
the i-th position. The map

hUi : Ui × R → π−1 (Ui)

([a0, . . . , 1, . . . an] , t) 7→ (ta0, . . . t, . . . tan)

gives us the required homeomorphisms. Thus, ξ = (E,X,F, π) is a vector bundle.

Now that we know how vector bundles are defined, let us consider how they connect
to each other.

Definition 9. Let ξ = (E,X,F, π) and η =
(
Ê, X̂, F̂ , π̂

)
be two vector bundles such that

F and F̂ have the same field of scalars. An homomorphism of vector bundles, denoted
(
f, f̃

)
:

ξ → η, is a pair of continuous maps
(
f, f̂

)
where f̂ : E → Ê, f : X → X̂ , such that the

diagram

E
f̂→ Ê

π ↓ ↓ π̂

X
f→ X̂

commutes and f̂
∣∣∣
π−1(x)

: π−1 (x)→ π̂−1 (f (x)) is a linear map for every x ∈ X .

Given a third vector bundle ζ =
(
Ẽ, X̃, F̃ , π̃

)
(where F̃ again has the same field of scalars as F

and F̂ ) and a vector bundle homomorphism (g, ĝ) : η → ζ (where g : X̂ → X̃ and ĝ : Ê → Ẽ),
the composition of

(
f, f̃

)
and (g, ĝ) is the vector bundle homomorphism (g, ĝ)◦

(
f, f̃

)
: ξ → ζ

given to the pair
(
g ◦ f, ĝ ◦ f̂

)
.

The identity homomorphism of ξ, Idξ, is the vector bundle homomorphism Idξ : ξ → ξ associ-
ated to the pair (IdX , IdE).

An isomorphism of vector bundles between ξ and η is an homeomphism of vector bundles f :

ξ → η for which there exists another homomorphism of vector bundles g : η → ξ such that
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f ◦ η = Idη and η ◦ ξ = Idξ.

Example 3. In the context of Example 2, consider the trivial bundle η given by taking Ê =

RPn×Rn,X = RPn, F̂ = Rn and π̂ = proj1. As can be directly checked, the pair (IdRPn , i),
where i : E ↪→ Ê is just the inclusion, induces an homeomorphism of vector bundles î : ξ → η.

If all the other elements in the definition of vector bundle are sufficiently clear from the
context, it is a common abuse of notation to refer to the total space as a vector bundle.
For instance, in Example 3 we may say that η = RPn × Rn. Consequently, it is also
common to refer to an homomorphism of vector bundles with the same symbol as the
one used for the associated map between the total spaces and to talk about them indis-
tinctively.

Remark 3. Perhaps the hardest part of checking that a pair
(
f, f̃

)
is indeed a vector bundle

homomorphism is verifying continuity. There is, however, an useful criterion to do this. Fix x ∈
X . Let (Ux, hUx) and

(
Vf(x), hVf(x)

)
be local trivializations around x and f (x) respectively.

We can assume without loss of generality that the image of f ◦ hUx is contained in the image of
hVf(x) (if it doesn’t we can intersect Ux with π

(
f−1

(
Im
(
hVf(x)

)))
and restrict hUx). Then

αfx : h−1
Vf(x)

◦ f ◦ hUx is a map from Ux × F to Vf(x) × F̂ . If for every x ∈ X we can choose Ux
and Vf(x) such that αfx is continuous, then f must be continuous, because continuity is a local
property and both hUx and h−1

Vf(x)
are local homeomorphisms.

Last but not least, we have the notion of a section of vector bundles, which is critical in
many applications of these notions:

Definition 10. Let ξ = (E,X,F, π) be a vector bundle. A section is a map ψ : X → E such
that π ◦ ψ = IdX . The set of sections of ξ is denoted by Γ (ξ). Since each fiber π−1 (x) is a
vector space, given two sections ψ1 and ψ2 we can sum them to get a new section according to
(ψ1 + ψ2) (x) = ψ1 (x) + ψ2 (x). Also, we can define a multiplication by the field of scalars of
F , according to (rψ) (x) = rψ (x). Hence Γ (ξ) is a vector space over the same field of scalars
as F .

2.2 Construction of bundles

This section is devoted to explain some techniques to construct new vector bundles
from preexisting ones. So, throughout this section, let

ξ = (E,X,F, π) η =
(
Ê,X, F̂ , π̂

)
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be vector bundles over the same topological space space.

The pullback of a vector bundle Let Y be a topological space and f : Y → X

a continuous function. We will construct a new vector bundle with Y as base space
using this information, called the pullback of ξ by f , or f∗ (ξ). First, define Ẽ ⊂ Y × E
as

Ẽ = Y ×(f,π) E = {(y, v) |f (y) = π (v)}

the so called fiber product. Projection onto the first factor gives us the required map
to Y , π̃. The fibers of this projection are also the fibers of the vector bundle ξ, so they
are endowed with a vector space structure isomorphic to F . Finally, for the trivializa-
tions, fix y ∈ Y . We know that there exists an open set Ux ⊂ X around x and a local
homeomorphism hUx : Ux × F → π−1 (Ux). Then

π̃−1
(
f−1 (Ux)

)
= f−1 (Ux)×(f,π) E

= f−1 (Ux)×(f,π) π
−1 (Ux)

∼= f−1 (Ux)×(f,π) Ux × F
∼= f−1 (Ux)× F

Since f−1 (Ux)×(f,π) Ux is just f−1 (Ux). Thus we have the required local triviality and
we can conclude that f∗ (ξ) is indeed a vector bundle.

Notice that the map proj2 : Ẽ → E makes the diagram

Ẽ
proj2−→ E

π̃ ↓ ↓ π

Y
f−→ X

commute and it’s obviously a linear homomorphism on each fiber, so the pair (f, proj2)

defines an homomorphism of vector bundles from f∗ (ξ) to ξ.

Duals Recall that π−1 (x) is a vector space for every x ∈ X . As such, it has a dual
vector space

[
π−1 (x)

]∗. Define

Edual =
⊔
x∈X

[
π−1 (x)

]∗
Now every v ∈ Edual belongs to one and only one

[
π−1 (x)

]∗, so there is a natural
assignment πdual : Edual → X although we cannot discuss continuity yet, since we
haven’t defined a topology on Edual.

In order to do just that, recall that we have a local trivialization (U, hU ) around every
x ∈ X . Moreover, for each x̂ ∈ U , h|proj−1

1 (x̂) is a linear isomorphism from F to π−1 (x̂).
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Hence,
(
h|proj−1

1 (x̂)

)∗
is a linear isomorphism from

[
π−1 (x)

]∗ to F ∗. Repeating this
process over each x̂ ∈ U , we get a function

h∗U :
⊔
x∈U

[
π−1 (x)

]∗ → U × F ∗

that is bijective because each
(
h|proj−1

1 (x̂)

)∗
is a linear isomorphism. Now, consider

V ⊂ Edual. Given a local trivialization (U, hU ), V generates a subset of U × F ∗ by
VU = h∗U

(
V ∩ π−1

dual (U)
)
. We declare V to be open if and only if each one of these VU

is open. It’s easy to check that this is indeed a topology on Edual and that it makes
πdual continuous. Moreover the pairs

(
U, (h∗U )−1

)
are local trivializations ofEdual. This

makes the 4-tuple (Edual, X, F
∗, πdual) is a vector bundle. It is known as the dual bundle

to ξ and denoted by ξ∗.

Tensor products and the bundle of isomorphisms An important step in the defini-
tion of the dual bundle was to define a topology for Edual. We can imitate this process
to form two additional vector bundles, the bundle of homomorphisms Hom (ξ, η) and
the tensor product of ξ and η, ξ ⊗ η.

First, define
EHom(ξ,η) =

⊔
x∈X

Hom
(
π−1 (x) , π̂−1 (x)

)
Again there is a natural assignment πHom(ξ,η) fromEHom(ξ,η) toX . For each x ∈ X there

are local trivializations around x,
(
U ξx , h

ξ
Ux

)
and

(
Uηx , h

η
Ux

)
, for ξ and η respectively. For

every x̃ ∈ U ξx ∩ Uηx and every element αx ∈ Hom
(
π−1 (x) , π̂−1 (x)

)
, there is a unique

linear map α̃x that makes the diagram

π−1 (x̃)
α̃x̃−→ π̂−1 (x̃)(

hξUx

∣∣∣
proj−1(x̃)

)
↑ ↑

(
hηUx

∣∣
proj−1(x̃)

)
F

αx̃−→ F̂

commute. The assignment ∗̃x : Hom
(
F, F̂

)
→ Hom

(
π−1 (x) , π̂−1 (x)

)
that sends αx

to α̃x is clearly a linear isomorphism. This allows us to define a function

∗̃
Uξx∩Uηx

:
(
U ξx ∩ Uηx

)
×Hom

(
F, F̂

)
→ π−1

Hom(ξ,η)

(
U ξx ∩ Uηx

)
We can use these functions to define a topology on EHom(ξ,η) in a manner completely
analogous to what we did for the dual vector bundle. Again it’s easy to verify that
all the conditions are given to make the tuple

(
EHom(ξ,η), X,Hom

(
F, F̂

)
, πHom(ξ,η)

)
a

vector bundle. This is the bundle of homomorphisms, Hom (ξ, η).
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Remark 4. A small remark should be made about the sections of the bundle Hom (ξ, η). It
follows from the preceding discussion that an element s ∈ Γ (Hom (ξ, η)) is a map that assigns
to every point in x ∈ X an homomorphism Lx : π−1 (x) → π̂−1 (x) in a continuous fashion.
But according to Definition 9, this is exactly what a homomorphism of vector bundles should
do. In other words, every homomorphism of vector bundles between ξ and η can be though of as
a section of the bundle Hom (ξ, η) and viceversa.

The construction of ξ ⊗ η is completely analogous.

2.3 Basic properties of vector bundles

Bijective homomorphisms are invertible In contrast to what happens in Point Set
Topology, where a continuous function may be both surjective and injective but its "set
theoretical" inverse may not be continuous, bijective homomorphisms of vector bun-
dles are invertible.

Proposition 12. Let ξ = (E,X,F, π) and η =
(
Ê,X, F̂ , π̂

)
be two vector bundles over

the same base space such that F and F̂ have the same field of scalars. Let s be an element
of Γ (Hom (ξ, η)) such that s (x) is invertible for every x ∈ X . Then the assignment s−1 :

X → Hom (ξ, η) given by s−1 (x) = (s (x))−1 is continuous. In fact, it is also an element of
Γ (Hom (ξ, η)).

Proof. Let
EGL(ξ,η) =

⊔
x∈X

GL
(
π−1 (x) , π̂−1 (x)

)
endowed with the topology inherited as a subspace of EHom(ξ,η). Keeping the notation
from last section, the trivializations ∗̃

Uξx∩Uηx
can be restricted to give local homeomor-

phisms

∗̃
Uξx∩Uηx

: U ξx ∩ Uηx ×GL
(
F, F̂

)
→ EGL(ξ,η) ∩ π−1

Hom(ξ,η)

(
U ξx ∩ Uηx

)
Which are in fact group isomorphisms over each fiber. Now, consider the map inv :

EGL(ξ,η) → EGL(ξ,η) that sends sends T to T−1. The same idea as the one used in Re-
mark 3 shows that in order to check continuity of inv it suffices to check the continuity

of each of the maps αx =
(
∗̃
Uξx∩Uηx

)−1
◦ inv ◦

(
∗̃
Uξx∩Uηx

)
. But αx (x, S) =

(
x, S−1

)
. Since

inversion is a continuous function in the Lie GroupGL
(
F, F̂

)
, these αx are all continu-

ous so inv is indeed continuous. Finally, s−1 = inv◦s, so it is continuous. It’s obviously
a section, so s−1 ∈ Γ (Hom (ξ, η)).
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Corollary 5. Let ξ = (E,X,F, π) and η =
(
Ê, X̂, F̂ , π̂

)
be two vector bundles over the same

base space such that F and F̂ have the same field of scalars. Then if
(
f, f̃

)
: ξ → η is a vector

bundle homomorphism such that f is an homeomorphism of the base spaces and that f̃
∣∣∣
π−1(x)

is invertible for every x ∈ X , then
(
f, f̃

)
is an isomorphism of vector bundles.

Proof. Under the hypothesis, it’s clear that f̃ must be bijective. Moreover, it’s “set the-
oretical” inverse, f̃−1 makes the diagram

Ê
f̃−1

−→ E

π̂ ↘ ↙π

X

commute and its restriction to the fibers is given by
(
f̃
∣∣∣
π−1(x)

)−1

, which is a linear

transformation. So, all that remains to be shown is that f̃−1 is indeed continuous. But
this is clear now, since, as stated in Remark 4,

(
f, f̃

)
can be thought of as a section of

the bundle Hom (ξ, η) and by Lemma 12, its inverse is also continuous.

The co-cycle theorem In the context of Definition 8, let (U, hU ), (V, hV ) be two local
trivializations and suppose U∩V 6= ∅. Then the map gU,V = h−1

V

∣∣
π−1(U∩V )

◦ hU |(U∩V )×F
is an homeomorphism from (U ∩ V ) × F onto itself that respects the fibers (that is,
for every x ∈ U ∩ V and v ∈ F , (x, v) ∈ F is sent to (x, ṽ) for some other ṽ ∈ F )
and it’s a linear automorphism on each one (that is, the map that sends v to ṽ is au-
tomorphism of F ). The functions gU,V are called transition functions. For instance,
in Example 2, consider x ∈ U0 ∩ U1. Then a pair ([1, a1, . . . , an] , t) is sent by hU0 to
([1, a1, . . . , an] , (t, ta1, . . . , tan)) ∈ RPn. Now (t, ta1, . . . , tan) = ta1

(
1
a1
, 1, . . . , ana1

)
, so

([1, a1, . . . , an] , (t, ta1, . . . , tan)) is sent by h−1
U1

to ([1, a1, . . . , an] , ta1). We conclude then
that gU0,U1 consists of sending pairs ([1, a1, . . . , an] , t) into pairs ([1, a1, . . . , an] , ta1).

The vector bundle provides then an open cover of the base space {Uα}α∈Λ and a col-
lection of maps gUα,Uβ : (Uα ∩ Uβ)× F → (Uα ∩ Uβ)× F . It can be easily verified that a
co-cycle relation holds for this maps:

gUα,Uγ
∣∣
Uα∩Uβ∩Uγ

= gUβ ,Uγ
∣∣
Uα∩Uβ∩Uγ

◦ gUα,Uβ
∣∣
Uα∩Uβ∩Uγ

A very important fact about vector bundles is that you can actually recover the entire
bundle just from the open cover {Uα}α∈Λ and the collection of maps gUα,Uβ . Indeed,
let us define a total space Ê in the following three steps. First by forming the disjoint
union of all local products

Ẽ =
⊔
α∈Λ

Uα × F
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Second, we define on Ẽ the minimal equivalence relation such that if x ∈ Uα ∩ Uβ , the
pairs (x, v) ∈ Uα × F and (x, ṽ) ∈ Uβ × F are related if gUα,Uβ (x, v) = (x, ṽ). Finally,
call Ê the quotient of Ẽ by this relation. Since the points that are being identified share
the same first coordinate, the projection on the first coordinate is still well defined.
Moreover, if ια denotes the inclusion of Uα×F in Ẽ and π is the quotient map π : Ẽ →
Ê, then π ◦ ια are the trivializations of Ẽ. All conditions are satisfied then, so we have a
vector bundle. It can be easily verified that this new bundle is isomorphic to the bundle
we started with.

The preceding discussion showed that we can recover the entire bundle just from
the open cover associated to it and the transition functions. Moreover, we can in-
terpret this result as a way to construct new bundles. Indeed, given a base space
X , all we have to do is define an open cover {Uα}α of X and transition functions
gUα,Uβ : (Uα ∩ Uβ) × F → (Uα ∩ Uβ) × F that are the identity on the first component
and such that the co-cycle condition holds. The construction of Ẽ and Ê can be carried
out in exactly the same way as before, so as to get a vector bundle. This observation is
called The Co-cycle Theorem.

Example 4. ConsiderX = S1 ⊂ R2, and the open coverUS = S1\ {(0, 1)},UN = S1\ {(0,−1)}.
Define the transition functions as

gUS ,UN ((x, y) , v) =

((x, y) , v) x < 0

((x, y) ,−v) x > 0

and gUN ,US = (gUS ,UN )−1. The co-cycle condition holds immediately, since there are only two
sets in the open cover. The preceding discussion shows that this information defines a vector
bundle, which is a very famous one: the Möbius band.

Extension of sections defined on a closed subset For the remainder of this section,
we will add an additional hypothesis: we will consider all base spaces to be compact
and Hausdorff.

Lemma 1. Let ξ = (E,X,F, π) be a vector bundle, Y a closed subset of X and s : Y → E a
section defined only on Y . Then there exists an open set U containing Y and a section defined
on U , t : U → E such that t|Y = s.

Proof. For each x ∈ Y , there exists a local trivialization (Ux, hUx) around x. There, s◦hUx
is a F -valued function defined in the closed set Y ∩Ux. By Tietze’s Extension Theorem,
we can extend s ◦ hUx to a function tx : Ux → F . Since Y is also compact, we can
choose a finite sub-collection {Uxi}i=1,...,n that covers Y and a subordinated partition
of unity {pi}i=1,...,n. Then U =

⋃n
i=1 Ui and t =

∑n
i=1 piti are the required open set and

section.
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Proposition 13. Let ξ = (E,X,F, π) and η =
(
Ê, X̂, F̃ , π̂

)
be two vector bundles. Let

Y be a closed subset of X and suppose we have an isomorphism of vector bundles over Y ,
s : π−1 (Y )→ π̂−1 (Y ). Then s can be extended to an open set containing Y .

Proof. We can think of s as a section of the bundle Hom (ξ, η) defined over Y . By
Lemma 1, it can be extended to an open set U containing Y . Since det s is a contin-
uous function that doesn’t vanish over Y , it must take nonzero values over some open
subset of U that contains Y .

Corollary 6. Let ξ = (E,X,F, π) be a vector bundle, Y a topological space and suppose we
have two homotopic functions f0, f1 : Y → X . Then, f∗0 (ξ) ∼= f∗1 (ξ).

Proof. Let F : Y × I → X be an homotopy between f0 and f1, and ft = F ◦ it where
it : Y → Y × I is given by it (y) = F (y, t). We will show that, as a function of t ∈ I ,
the isomorphism class of f∗t (ξ) is locally constant. Since I is connected, that would be
enough to show the result.

Fix t ∈ I . Define Ft : Y × I → X by the rule Ft (y, t) = ft (y). We have two vector
bundles over Y × I , namely F ∗ (ξ) and F ∗t (ξ). Now, these two bundles are isomorphic
over Y ×{t}, which is a closed subset of Y × I . By Proposition 13 they must be isomor-
phic over some open set containing Y × {t}. By the Tube Lemma, such open set must
contain a subset of the form Y × δ for some sub-interval δ around t that has nonzero
length. This means that f∗t′ (ξ) ∼= f∗t (ξ) for all t′ ∈ δ, as we wanted to show.

Corollary 7. Every vector bundle over a contractible topological space is trivial.

Proof. This follows from Corollary 6, since for a contractible set the identity is homo-
topic to a constant map and every vector bundle over a one-point set is trivial.

Theorem 5. Every vector bundle over a paracompact Hausdorff space admits a riemannian
metric.

Proof. Let X be a topological space with such properties and ξ a vector bundle over it.
Then, there exists a locally finite open cover {Uα}α, made of trivializing open sets of
ξ. Over each one of those open sets we can define trivially a riemannian metric for ξ
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gα. The space also admits a partition of unity {ρα}α subordinated to the cover {Uα}α.
Then the metric g =

∑
α ραgα is a riemannian metric for ξ.

Theorem 6. Every vector bundle ξ over a compact space X has a direct complement.

Proof. Let {Ui}i=1,...,r be a finite open cover of X made of trivializing open sets of ξ
and {ρi}i=1,...,n a subordinated partition of unity. Let hi : π−1 (Ui) → Ui × Rn be the
trivializing maps associated to the cover, proj2 : Ui × Rn → Rn be the projection onto
the second factor and fi = proj2 ◦ hi the composition of these last two maps. Finally,
consider S : ξ → B × Rrn given by

S (v) = (π (v) , ρ1 (π (v)) f1 (v) , . . . , ρr (π (v)) fr (v)) .

Then S is a fiberwise injection of ξ into the trivial bundle of dimension n over X , εnr.
Now, we can endow εnr with the usual metric, and at each point x ∈ X we can take the
orthogonal complement of the image of ξ under S, to form a vector bundle. Clearly, it
would be a direct complement of ξ.



Chapter 3

Topological K-Theory

This is the main chapter of this document. The main idea here is to associate to a
topological space a group built from the collection of vector bundles over that space.
We will study how to do this precisely and some properties of this construction. Then
main result here is the calculation of the K-theory of a point thanks to Atiyah-Bott-
Shapiro’s construction and a generalization of that calculation for the Thom complex
of real, even dimensional, complex vector spaces over compact Hausdorff spaces.

3.1 Basic Notions

3.1.1 Definitions

Let X be a compact topological space and let V ectR (X) and V ectC (X) be the set of
isomorphism classes of real and complex vector bundles over X respectively. There
is a natural operation on both sets given by direct sum, which is an associative, com-
mutative operation with a zero element: the zero vector bundle. For a general space,
the cancellation property doesn’t necessarily hold for this operation. Indeed, consider
X = S2, τ its tangent bundle, N its normal bundle and ε3 its trivial bundle of range
three. As can be easily checked, N ∼= ε1, the trivial line bundle. Also, τ ⊕ N ∼= ε3, so
τ ⊕ ε1 ∼= ε3. Naturally, ε2 ⊕ ε1 ∼= ε3. Yet, τ is not isomorphic to ε2 as it is well known.
V ectF (X) is what we call an abelian semigroup: a set with an abelian, associative op-
eration with a neutral element. As the next proposition shows, this algebraic structure
can always be adapted to create a group.

Proposition 14. LetA be an abelian semigroup with sum + and neutral element 0. Then there
exists an abelian group K (A) and a map of semigroups i : A → K (A) such that if G is an
abelian group and f is a map of semigroups f : A → G, there exists a unique map of groups
f̂ : K (A) → G such that f = f̂ ◦ i. Moreover, the pair (K (A) , i) is the only one with this
property.

33
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Proof. We will construct K (A) and i directly. On A× A define an equivalence relation
according to

(a, b) ∼ (c, d)⇐⇒ ∃e ∈ A : a+ d+ e = c+ b+ e.

Naturally, A × A has an operation defined by coordinate-wise sum, which descends
to the set of equivalence classes K (A) ≡ A × A/ ∼. But on K (A), the operation has
inverses, besides the other properties it inherits. Indeed, for any a, b ∈ A,

[(a, b)] + [(b, a)] = [(a+ b, a+ b)] = [(0, 0)] .

So K (A) is actually a group. Let i : A→ K (A) be the map defined by i (a) = [(a, 0)]. If
G is an abelian group and f : A→ G is a map of semigroups, then f extends to a map
f̃ : A × A → G by sending (a, b) into f (a) − f (b). Clearly if (a, b) ∼ (c, d), f̃ ((a, b)) =

f̃ ((c, d)) so f̃ descends to a map f̂ : K (A)→ G. It’s also clear that f = f̂◦i and since the
images of the pairs [(a, 0)] determine f̃ and hence f̂ completely, the extension is unique.
The fact that the pair (K (A) , i) is unique follows from the traditional arguments.

We will be working mostly with complex vector bundles. We define K (X) to be
K (V ectC (X)) and if ξ is a vector bundle, we denote i (ξ) by [ξ]. The construction
in the proof of Proposition 14 shows very clearly that if ζ and η are two vector bundles,
then [ξ] = [η] if and only if there exists a third vector bundle ζ such that ξ ⊕ ζ ∼= η ⊕ ζ.
In that case, we say ξ and η are stably equivalent Also, it was clear in the proof that
[(a, 0)] = − [(0, a)], the elements of K (A) can be written as i (a)− i (b). So, in our case,
generic elements of K (X) are of the form [ξ]− [η] for some vector bundles ξ and η.

Now, according to Theorem 6, vector bundles over X admit direct complements. So in
the previous paragraph, if ξ⊕ζ ∼= η⊕ζ we can add on both sides a vector bundle ρ such
that ζ ⊕ ρ ∼= εn for some n. Then ξ ⊕ εn ∼= η ⊕ εn. In other words, if two vector bundles
are stably equivalent, we may assume that we can add the same trivial bundle to both
of them and get isomorphic vector bundles. Similarly, generic elements of K (X) can
be assumed to be of the form [ξ]− εn for some n.

If X happens to be a pointed space with distinguished point x0, the pullback of the
inclusion i : {x0} ↪→ X gives us a map from K (X) to K (x0). We call the kernel of that
map K̃ (X). Now, the collapsing map that sends all of X to x0 makes the sequence

0→ K̃ (X) ↪→ K (X)
i∗→ K (x0)→ 0

split, so K (X) ∼= K̃ (X) ⊕K (x0). It’s easy to see that the elements of K̃ (X) are pairs
[ξ] − [εn] in K (X) where n is exactly the range of ξ. Finally, for any space X (but
mostly for not pointed spaces) we call X+ the space made of adding an isolated point
to X , X+ = X t {pt}. It is a pointed space with distinguished point pt and K̃ (X+) ∼=
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K (X). Finally, for a compact pair (X,Y ), we define K (X,Y ) to be K̃ (X/Y ), where
the distinguished point of X/Y is Y/Y . If Y = ∅, K (X,Y ) is just K (X).

In order to define K-theory groups of higher indexes, we need to talk about a previous
concept first. Let X and Y be two pointed spaces with distinguished points x0 and y0

respectively. Their smash product, X ∧ Y , is the space

X ∧ Y = X × Y/ (X × {y0} ∪ {x0} × Y ) .

It’s not hard to see that for any non-negative integers, Sn ∧ Sm ∼= Sn+m. For a pointed
space X , the reduced n-th suspension of X is the space SnX ≡ Sn ∧X .

Definition 11. Let X be a pointed space with distinguished point x0, Y a subspace of X that
contains x0 and Z some other space, not necessarily pointed. Then:

• K̃−n (X) = K̃ (SnX)

• K−n (X,Y ) = K̃−n (X/Y ) = K̃−n (Sn (X/Y ))

• K−n (Z) = K̃−n (Z+) .

3.1.2 Important facts

Lemma 2. LetX be a compact space and let Y be a closed contractible subset ofX . If π denotes
the canonical map from X to X/Y , then the map π∗ : K (X/Y )→ K (X) is an isomorphism.

Proof. We will prove this Lemma by constructing a map θ : V ectn (X)→ V ectn (X/Y )

that is a two sided inverse for π∗ : V ectn (X/Y )→ V ectn (X).

Let ξ be a vector bundle over X with total space E and projection map πξ. Since Y
is contractible, Corollary 7 tells us that ξ|Y is trivial. That means that there is an iso-
morphism of vector bundles, α, from ξ|Y to the trivial bundle Y × Fn, where n is the
range of ξ. Then α̃ = proj2 ◦ α gives us a map from ξ|Y to Fn. Let us define now an
equivalence relation on E, the total space pf ξ, as follows: for any two elements v1 and
v2 on E, v1 ∼ v2 if v1 = v2, or if both πξ (v1) and πξ (v2) belong to Y and α̃ (v1) = α̃ (v2).
In other words, ∼ identifies the horizontal stripes of ξ|Y according to α, so to speak.
Let Eα = E/ ∼.

Now, let us show that we can build a vector bundle over X/Y using Eα. Since ∼
identifies points over Y , πξ descends to a map πα : Eα → X/Y . For any x ∈ X\Y ,
π−1
α (x) is just π−1

ξ (x), so it has a vector space structure. The same local trivialization for
E around x works as a local trivialization of Eα, although we may have to restrict the
domain so as to exclude Y , which is not a problem, since Y is closed. So the only thing
that is yet to be verified is that we have a local trivialization of Eα around the point Y
in X/Y . But, by Proposition 13, we can extend the isomorphism α to an isomorphism
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β from ξ|U to U × Fn, where U is some open set that contains Y . Taking the quotient
by ∼ amounts to turning β into an isomorphism β∼ from π−1

α (U/Y ) to (U/Y ) × Fn.
Since U/Y is open in X/Y , β∼is the local trivialization we were looking for. So ξα =

(Eα, X,Fn, πα) is a vector bundle over X/Y and it’s not hard to check that π∗ (ξα) = ξ.

Finally, we claim that the structure of ξα is actually independent of the particular triv-
ialization chosen. In other words, that all the ξα’s are isomorphic to one another. This
follows from Proposition the fact that all possible trivializations α are homotopic to
each other.

Corollary 8. Let X be a pointed space. Then K (SX) ∼= K (CX/X).

Proof. If x0 is the distinguished point of X , SX is obtained from CX/X by collapsing
I×x0, which is a closed contractile subset ofCX/X . Hence, by Lemma 2, the projection
π : CX/X → SX induces an isomorphism π∗ : K (SX)→ K (CX/X).

Proposition 15. Let (X,Y ) be a pair of pointed compact spaces. If i : Y → X denotes the
inclusion and π : X → X/Y denotes the projection, then the sequence

K̃ (X/Y )
π∗→ K̃ (X)

i∗→ K̃ (Y ) (3.1)

is exact.

Proof. The map π ◦ i is constant, so i∗ ◦ π∗ (η) = εnY for any η in V ectn (X/Y ). Then
i∗◦π∗

(
[η]−

[
εnX/Y

])
= [εnY ]−[εnY ] = 0. In other words, i∗◦π∗ = 0, or Im (π∗) ⊂ Ker (i∗).

On the other hand, suppose [ξ]− [εnX ] ∈ Ker (i∗). That means

i∗ (ξ)⊕ εkY = i∗
(
ξ ⊕ εkX

)
∼= εn+k

Y (3.2)

Doing the same thing as in Lemma 2, Equation 3.2 tells us that we can build a vector
bundle η over X/Y such that π∗ (η) ∼= ξ ⊕ εkX , which means π∗

(
[η]−

[
εn+k
X

])
= [ξ] −

[εnX ]. This shows that Ker (i∗) ⊂ Im (π∗).

Let X be a compact space and Y some closed subspace of X . Then, by taking X = X+

and Y = Y +, we get an exact sequence

K (X,Y )
π∗→ K (X)

i∗→ K (Y ) (3.3)

On the other hand, we can replace the first term on the left of Equation 3.1 by K̃ (X ∪ CY ).
Indeed, we can obtain X/Y from X ∪ CY by collapsing CY , which is a closed con-
tractible, so by Lemma 2, the projection πC : X ∪CY → X/Y induces an isomorphism
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in K̃. Moreover, if iC : X → X ∪ CY denotes the inclusion, the diagram

X
iC→ X ∪ CY
π ↘ ↓ πC

X/Y

commutes, so the associated diagram

K̃ (X)
i∗C← K̃ (X ∪ CY )

π∗ ↖ ↑ π∗C
K̃ (X/Y )

also commutes. Hence, the sequence

K̃ (X ∪ CY )
i∗C→ K̃ (X)

i∗→ K̃ (Y ) (3.4)

is also exact. Now, we could iterate this process to obtain

K̃ (X ∪ C3 (X ∪ C1Y ) ∪ C2X ∪ C1Y )→ K̃ (X ∪ C2X ∪ C1Y )→ K̃ (X ∪ CY )→ K̃ (X)

(3.5)
This ideas are useful in establishing the following result:

Theorem 7. Let (X,Y ) be a pair of compact pointed spaces. Then there is an exact sequence

· · · → K̃−n (X/Y )
π∗→ K̃−n (X)

i∗→ K̃−n (Y )→ . . .

· · · → K̃−1 (X)
i∗→ K̃−1 (Y )

θ→ K̃ (X/Y )
π∗→ K̃ (X)

i∗→ K̃ (Y )

Proof. First of all, it suffices to show the exactness of

K̃−1 (X/Y )
π∗→ K̃−1 (X)

i∗→ K̃−1 (Y )
θ→ K̃ (X/Y )

π∗→ K̃ (X)
i∗→ K̃ (Y )

since the rest of the sequence can be obtained by replacing X by SnX and Y by SnY .
Furthermore, the sub-sequence

K̃−1 (X/Y )
π∗→ K̃−1 (X)

i∗→ K̃−1 (Y )

is just 3.1 with X = SX and Y = SY , since S (X/Y ) ∼= SX/SY . So, the proof reduces
to show that the sequence

K̃−1 (X)
i∗→ K̃−1 (Y )

θ→ K̃ (X/Y )
π∗→ K̃ (X)

is exact (of course, in the process we have to define θ).
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Actually, what we intent to show is that this sequence is equivalent to 3.5. The details
are in [1].

Corollary 9. If Y is a retract of X , then K−n (X) ∼= K−n (X,Y )⊕K−n (Y ).

Proof. Let f : X → A be the retraction. Then the fact that i∗ ◦ f∗ = IdK(Y ) implies the

map K (X)
i∗→ K (Y ) is surjective. Similarly, if fn : SnX+ → SnY + are the maps in-

duced by the retraction, the fact that i∗ ◦f∗n = IdKn(Y ) implies thatKn (X)
i∗→ Kn (Y ) is

also surjective for all n. Then, by the exactness in Theorem 7, all the maps K̃−n−1 (Y )
θn→

K̃−n (X/Y ) must be trivial. This makes every short sequence Kn (X,Y )
π∗→ Kn (X)

i∗→
Kn (Y ) a short exact split sequence

0→ Kn (X,Y )
π∗→ Kn (X)

i∗→ Kn (Y )→ 0.

The result follows immediately.

Corollary 10. If X and Y are pointed spaces,

K̃−n (X × Y ) ∼= K̃−n (X ∧ Y )⊕ K̃−n (X)⊕ K̃−n (Y ) .

Proof. This Corollary follows from a double application of Corollary 9. First, X is a
retract of X × Y , and the quotient is X × Y/X × {y0}, so

K̃−n (X × Y ) ∼= K̃−n (X × Y/X × {y0})⊕ K̃−n (X) .

Second, Y is a retract of X × Y/X × {y0}, with quotient X ∧ Y , so

K̃−n (X × Y/X × {y0}) ∼= K̃−n (X ∧ Y )⊕ K̃−n (Y ) .

The result follows immediately.

The importance of Corollary 10 lies in the fact that it allows us to define a pairing that
turns K∗ (X) =

∑
nK

−n (X) into a graded ring. Let X and Y be two pointed spaces
and let ξ and η be vector bundles over X and Y respectively. Then π∗X (ξ) ⊗ π∗Y (η)

is a vector bundle over X × Y . Moreover, the assignment (ξ, η) 7→ π∗X (ξ) ⊗ π∗Y (η) is
bi-linear, so it induces a map K̃ (X)⊗ K̃ (Y )→ K̃ (X × Y ). Actually, the image of this
map is in the kernel of both iX : K̃ (X × Y ) → K̃ (X × {yo}) and iX : K̃ (X × Y ) →
K̃ (Y × {xo}), so by Corollary 10 it must be K̃ (X ∧ Y ). Replacing X by SnX and Y by
SmY , we get a pairing

K̃−n (X)⊗ K̃−m (Y )→ K̃−m−n (X ∧ Y ) . (3.6)
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Furthermore, by taking X = X+ and Y = Y +, we get

K−n (X)⊗K−m (Y )→ K−m−n (X × Y ) . (3.7)

The following Theorem is one of the most important mathematical results of the twen-
tieth century and it will be key in developing our understanding of orientations in
K-theory. It is also fundamental to see K-theory as a cohomology theory. Sadly, its
proof is outside the scope of this document. We limit ourselves to state it in the way
we are going to use it further along.

Theorem 8. Let X be a compact space and consider the pairing K̃
(
S2
)
⊗ K−n (Y ) →

K−n−2 (Y ) obtained by setting Y = Y + on 3.6. Let H be the Hopf bundle on S2 = CP 1

and b = [H]− ε1 the associated class in K̃
(
S2
)
. Then, the map

µb : K−n (Y ) → K−n−2 (Y )

a 7→ b · a

is an isomorphism.

Proof. See [1].

As a conclusion of this section, let us now present a couple of technical results that will
be used in the future.

Lemma 3. Suppose we have the following diagram:

· · · → C
′′
n−1

δn−1→ C
′
n

pn→ Cn
in→ C

′′
n

δn→ C
′
n+1 → . . .

f
′′
n−1 ↓ f ’

n ↓ fn ↓ f
′′
n ↓ f

′
n+1 ↓

· · · → D
′′
n−1 →

δ
′
n−1

D
′
n →

qn
Dn →

jn
D”
n →

δ′n

D
′
n+1 → . . .

where the Cn’s and Dn’s are abelian groups , the horizontal sequences are exact and the maps
f
′
n are isomorphisms. Then the sequence

· · · → Cn
(in,fn)−→ C

′′
n ⊕Dn

f
′′
n−jn−→ D

′′
n

∆n−→ Cn−1 → . . .(
where ∆n = pn+1 ◦

(
f
′
n+1

)−1
◦ δ′n

)
is exact.

Proof. This is a long but simple exercise in diagram chasing.
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Theorem 9. Let X be a compact space and let A and B be two closed subspaces of X such that
X = A ∪B. Then there is a long exact sequence of the form

. . .Kn−1 (A ∩B)
δ→ K−n (X)

(i∗A,i
∗
B)

−→ Kn (A)⊕Kn (B)→ Kn (A ∩B)→ Kn+1 (X) . . .

where the map from Kn (A)⊕Kn (B) to Kn (A ∩B) sends (α, β) to j∗A (α)− j∗B (β), jA and
jB being the inclusions of A ∩B in A and B respectively.

Proof. In Lemma 3, take C
′′
n = K−n (A), Cn = K−n (X), C

′
n = K−n (X,A), D

′′
n =

K−n (A ∩B), Dn = K−n (B) and D
′
n = K−n (B,A ∩B). Notice that B/A∩B and X/A

are homeomorphic, so the maps f
′
n are indeed isomorphisms.

3.2 K-Orientations

Definition 12. Let X be a compact space and π : V → X a real vector bundle over X ,
with dimension n and endowed with some riemannian metric. Let B (V ) and S (V ) be the
associated disc and sphere bundles. The space XV ≡ B (V ) /S (V ) is called the Thom complex
of V . Moreover, the bundle V is called K-orientable if there exists a class µV ∈ K̃

(
XV
)

such
that K̃∗

(
XV
)

is a freeK∗ (X)-module with generator µV . The class µV is called a Thom class.

The goal of this section is two show that real vector bundles of even dimension are K-
orientable. We will do so by constructing explicitly the class µV mentioned in Definition
12. But in order to get there, we have to go through a series of steps first.

Step 1: Constructing classes in K̃∗
(
XV
)

from exact sequences of vector bundles In
the setting of Definition 12, let E1 and E0 be two vector bundles over B (V ), and sup-
pose there exists an isomorphism σ : E1|S(V ) → E0|S(V ). We want to show that from
this information, we can define a class µ ∈ K̃∗

(
XV
)
.

Let A be the topological space made from two disjoint copies B (V )1 and B (V )2 of the
space B (V ), but identifying the subspaces S (V )1 and S (V )2 into a common subspace
S (V ). One one hand, the inclusion φ : (B (V )1 , S (V )) ↪→ (A,B (V )2) gives an isomor-
phism φ∗ between K (A,B (V )2) and K (B (V )1 , S (V )). So, it suffices to construct a
class in this last group. On the other hand, Proposition 15 gives us the exact sequence

K (A,B (V )2)→ K (A)→ K (B (V )2) .

Now consider the following two vector bundles on A. First, the bundle F obtained by
setting E1 over B (V )1, E2 over B (V )2 and using σ as a transition function on S (V ).
Second, the vector bundle F2 = π∗ (E2). Clearly, the two bundles coincide over B (V )2,
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so the class F − F2 goes to zero on K (B (V )2). Then, by exactness, it comes from from
a class G on K (A,B (V )2). But then φ∗ (G) is a class on K (B (V )1 , S (V )).

Step 2: Building an exact sequence like the one on Step 1. Let P be a principal
Spinc2n-bundle over X . From Proposition 11 we know Ac2k has a unique generator, F ,
which is a irreducible graded module on Cl2n.

In particular, F is a Spinc2n-module so let E = E0 ⊕E1 = P ×Spinc2n F be the associated
bundle over X . Now consider the two bundles π∗ (E0) and π∗ (E1) over B (V ). Since
the elements on B (V ) can be seen as vectors in R2n, which is a subspace of Cl2n it
makes sense to define over each v ∈ S (V ) the map σ : π∗ (E0)|v → π∗ (E1)|v that sends
w to v · w for every w ∈ π∗ (E0)|v. This establishes an isomorphism of bundles π∗ (E0)

and π∗ (E1) defined on S (V ).

So far, Steps 1 and 2 have allowed us to define a class µ in K
(
XV
)
. We need to show

now that indeed K̃
(
XV
)

is a free module over K (X) . This is what the following three
steps are for.

Step 3: XV is locally a suspension of X Let C be a closed subset of X such that V is
trivial over C. Then K̃ (B (V |C) /S (V |C)) ∼= K−2n (C). Indeed, it’s easy to see that

B (V |C) /S (V |C) ∼= C+ × S2n/
(
C+ × {pt} ∪ S2n × {+}

)
= S2n ∧ U+

Hence, taking K̃ on both sides, we obtain the result.

Notice that we could apply Step 1, 2 and 3 to X = pt. For each n ∈ N, we would get a
class µn in K̃

(
S2n
)
.

Theorem 10. The classes µn ∈ K̃
(
S2n
)

are generators of K̃
(
S2n
)
.

Proof. See [2].

Step 4: µ is locally Thom. Notice that over each point, the construction in the past
three steps restricts exactly to the construction in Theorem 10. So multiplication by µ is
equivalent to multiplication by the generator of K̃

(
S2n
)

in the setting

K̃
(
S2n
)
⊗K−m (C)→ K−m−2n (C)

But this is an isomorphism for all n, by Theorem 8. Hence µ is locally a Thom class.

Step 5: Constructing a global isomorphism. Let X be covered by a finite number of
closed sets C1, C2, . . . , CN that trivialize V . We want to show that multiplication by
µ gives us an isomorphism on C1 ∪ C2 ∪ · · · ∪ CN . We show this by induction. For



42 Chapter 3. Topological K-Theory

n = 1, this is obvious. Suppose we already know it for C1 ∪ C2 ∪ · · · ∪ CN−1 = DN−1.
Then multiplication by an appropriate restriction of µ gives us a morphism of exact
sequences

· · · K−i (DN−1 ∪ CN ) → K−i (DN−1)⊕K−i (CN ) → K−i (DN−1 ∩ CN ) · · ·
↓ ↓ ↓

· · · K−i
(
E|DN−1∪CN

)
→ K−i

(
E|DN−1

)
⊕K−i (E|CN ) → K−i

(
E|DN−1∩CN

)
· · ·

The result follows now from the induction hypothesis and the 5-lemma.
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