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Abstract

Politician characteristic regression discontinuity (PCRD) designs are a popular strategy when attempting
to casually link a specific trait of an elected politician with a given outcome. However, recent research
has revealed that this methodology often fails to retrieve the target causal effect—a problem also known
as the PCRD estimation bias. In this paper, I provide a new econometric framework to address this lim-
itation in applied research. First, I propose a covariate-adjusted local polynomial estimator that corrects
for the PCRD estimation bias provided all relevant confounders are observed. I then leverage the sta-
tistical properties of this estimator to propose several decompositions of the bias term and discuss their
potential applications. Next, I devise a strategy to assess the robustness of the new estimator to omitted
confounders that could potentially invalidate results. Finally, I illustrate these methods through an appli-
cation: a PCRD aimed at evaluating the impact of female leadership during the COVID-19 pandemic.
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1 Introduction

The question of how particular electoral outcomes influence other social, economic, and political events is

central to many social sciences. However, isolating causal links between these topics is challenging, given

how intricately these topics are related. A common strategy to uncover these causal relationships relies on

estimating regression discontinuity (RD) designs comparing the outcomes of several tight electoral contests

(Lee, 2008). Close elections may provide a credible situation in which candidates or parties that garner just

enough support to win may be similar, and thus comparable, to candidates or parties that narrowly lose.

Thereby, RD designs can identify (local) causal effects under some assumption guaranteeing the compara-

bility between winners and losers (Cattaneo, Idrobo, & Titiunik, 2019).

A popular variant of close election RD designs is known as the Politician Characteristic Regression Dis-

continuity (PCRD) design1. PCRD designs seek to determine the impact of a politician’s characteristic X

(such as their gender, race, party affiliation, etc.) on a given outcome Y . In essence, this approach compares

instances where a politician who possesses the interest trait narrowly defeats a rival who does not, to elec-

tions where the opposite occurs. Therefore, PCRD designs do not contrast narrow winners to narrow losers,

as formulated in the canonical close election RD design. Instead, they compare outcomes in places where

a narrow winner features a trait to those same outcomes in places where the narrow winner lacks the trait

(equivalently, where the narrow loser has the trait).

However, Marshall (2022) demonstrates that PCRD designs typically fail to recover the desired causal

effect due to the existence of confounding factors. Even though PCRD designs can help hold constituency-

level confounders constant and causally identify outcome differences between places with and without an

appointed politician with characteristic X , these disparities may not exclusively reflect differences in the

highlighted trait. One reason is simple and amply recognized: politicians who exhibit trait X may con-

sistently display other personal traits that can also account for changes in the outcome. However, the

lesser-known aggravating problem is that such differences between winners and losers may unintendedly

and unavoidably arise when conditioning the sample to close races.

For example, using a PCRD design to study the impact of women on politics in places with gender

discrimination may overlook that women who can compete with men in close races are likely to be excep-

tionally talented or that their male opponents are relatively incompetent. Hence, if talent or competence

matters for outcomes, the PCRD design will unavoidably estimate a compound treatment comprising the ef-

fect of gender and all distinctive traits of female contestants involved in close elections. In a broader sense,

this distortion can be thought of as a type of post-treatment bias (Montgomery, Nyhan, & Torres, 2018),

1Following Marshall (2022), at least 126 articles using a PCRD design have been published in recent years, often in prestigious
journals and recurrently cited: “These articles have consistently appeared in prominent journals in political science and economics:
21% were published in the American Journal of Political Science, American Political Science Review, or Journal of Politics,
whereas 5% were published in the American Economic Review, Econometrica, the Quarterly Journal of Economics, or the Review
of Economic Studies. According to Google Scholar, these studies had collectively amassed 11,774 citations by March 8, 2022.”
(p.5)
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insofar as it emanates from conditioning on a variable (vote-margin) that is impacted by the treatment (the

trait of interest). The resulting estimation bias is thus a major concern for researchers and policymakers who

rely on this identification strategy to quantify the impact of trait X on a particular outcome.

This paper develops the first widely applicable econometric framework for bounding, decomposing, and

eliminating PCRD estimation bias in applied research. First, I prove that, provided all relevant confounders

are observed, a local polynomial estimator with a linear-in-parameters covariate adjustment can consistently

remove the PCRD estimation bias. This method is fully non-parametric, meaning its effectiveness does not

rely on assuming a specific relationship between the outcome and a politician’s characteristics. Moreover,

the resulting estimator can be a more precise alternative to conventional techniques, given it can simultane-

ously reduce estimation bias and variance in multiple empirical settings. In addition, the proposed estimator

is asymptotically normal, and its convergence rate is that of univariate local polynomial regressions regard-

less of the number or nature of the confounders.

Second, I leverage the estimator’s linear structure to construct a simple and independent estimator of

the PCRD estimation bias. I then show that this estimator can be decomposed into several economically

meaningful quantities. The primary goal of this breakdown is to determine the extent to which compen-

sating differentials or other ancillary characteristics explain the results in these locations. To that end, I

propose three distinct decompositions: one that assesses the influence of each observable trait on the com-

pound effect; a Kitagawa-Oaxaca-Blinder decomposition that evaluates whether the bias is primarily due to

differences in individual attribute endowments or their differential impact on the outcome; and a detailed

version that combines both of these breakdowns.

While the proposed estimator is general enough to correct bias in any PCRD design, its effectiveness

depends on the ability of a researcher to control for all relevant confounders. Whenever this is impossible,

which unfortunately is almost always the case, the covariate-adjusted estimator is not guaranteed to com-

pletely eliminate the PCRD estimation bias. This circumstance is thus comparable to the omitted variables

bias (OVB) in conventional linear regressions. As a result, I leverage my estimator’s linearity to adapt ex-

isting OVB sensibility methods to assess the credibility of PCRD designs in a more realistic situation in

which some individual characteristics may not be incorporated in the correction. These methods provide

reasonable bounds on the PCRD bias based on the observed data so that a researcher can determine how

likely it is that the omission of a relevant confounder could potentially invalidate results.

As a running example, I use the work of Bruce, Cavgias, Meloni, and Remı́gio (2022), who evaluate

the impact of female mayors on epidemiological outcomes in Brazil during the COVID-19 pandemic us-

ing a PCRD design. This application is particularly relevant since there is empirical evidence of several

compensating differentials emerging from close elections. Therefore, absent an assessment of the role of

compensating differentials, this calls into question the causal interpretation of the traditional PCRD design

conducted by the authors. My method offers such tools, and in this specific application, I show that observed
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differences in individual attributes do not significantly alter the authors’ results. Moreover, I can credibly

discard the existence of any unobserved confounder that could drastically change the study’s results. Hence,

I show that my methodology provides researchers with tools to assess the credibility of causal effect esti-

mates resulting from PCRD designs even when the estimation bias cannot be dismissed.

The present study is most closely aligned with the work of Marshall (2022), who first characterizes the

PCRD estimation bias. While Marshall’s primary contribution was highlighting the existence and origins

of the PCRD bias, he also explored potential solutions. However, his suggestions require strong parametric

assumptions about the bias structure or the use of meta-analysis to infer the sign or size of the bias. While

my proposal pursues the same type of solutions—covariate adjustment and bounding— it introduces a rig-

orous and systematic method for capping and correcting estimation bias in all PCRD designs. In that sense,

it furnishes a more general and less discretionary method than Marshall’s approach.

Due to its applicability, this paper is relevant to all empirical works that use PCRD designs as an iden-

tification strategy. These include the literature emphasizing the role of ascriptive characteristics such as

gender (Bhalotra & Clots-Figueras, 2014; Clots-Figueras, 2011; Ferreira & Gyourko, 2014), race (Hop-

kins & McCabe, 2012), ethnicity (Beach & Jones, 2017) , clan (Xu & Yao, 2015), or religious identity

(Bhalotra, Clots-Figueras, Cassan, & Iyer, 2014) in other downstream outcomes. My results also pertain to

research focusing on the role of politicians’ past like its prior incumbency (Lewis, Nguyen, & Hendrawan,

2020), criminal history (Chemin, 2012), and seniority (Fowler & Hall, 2015). Likewise, my findings apply

to studies stressing the importance of party membership (Pettersson-Lidbom, 2008), ideology (Hall, 2015),

and partisan alignment with other levels of the government (Bracco, Lockwood, Porcelli, & Redoano, 2015).

This paper is also related to the emerging field of research on selection bias correction and covariate

adjustment in RD designs. A key contribution in this area is the work of Frölich and Huber (2019a), who

developed a non-parametric kernel method for estimating local average treatment effects in RD designs with

selection on observables. Similar to their work, I demonstrate that it is possible to construct local polyno-

mial estimators with linear-in-parameters covariate adjustments that can asymptotically remove selection

bias. However, the relative advantage of my approach is that my estimator can eliminate selection bias

while preserving a simple linear structure that is useful for other analyses. Likewise, my estimator is also

related to the work of Calonico, Cattaneo, Farrell, and Titiunik (2019a), who explored linear-in-parameters

covariate adjustments in RD designs to reduce variance. The main difference is that my paper investigates

how these specifications can restore identification when additional confounders are present. Other studies

have proposed eliminating bias originated by potential confounders by re-weighting Nadaraya-Watson esti-

mators using inverse propensity scores (Peng & Ning, 2019). My proposal deviates from this approach since

it uses local regression methods for the correction. Lastly, Mukherjee, Banerjee, and Ritov (2021) extend

standard RD designs by modeling the running variable as a linear function of observed covariates, yielding

semiparametric estimators capable of correcting bias. In contrast, I consider a scenario in which selection

may be correlated with both the treatment and the forcing variable.
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My work also speaks to research concerning omitted variable bias sensitivity analysis. I contribute to this

literature by being the first paper to propose OVB sensitivity analysis tailored to local polynomial estimators

and RD designs. Furthermore, it is also the first approach to implement sensitivity analysis in the pres-

ence of both unobserved confounding and post-treatment bias. My proposal is based on Cinelli and Hazlett

(2020a), who created a set of tools for sensitivity analysis in regression models that are valid regardless of

the functional form of the treatment assignment mechanism or the distribution of unobserved confounders.

I build on this approach since it is flexible enough to adapt to RD design estimation and overcomes several

interpretation challenges arising in conventional approaches in economics like those of Altonji, Elder, and

Taber (2005) and Oster (2019)2. Other works on this subject that relate to my work include Imbens (2003),

Hosman, Hansen, and Holland (2010) and Rosenbaum and Rubin (1983).

The remainder of this paper is organized as follows. Section 2 motivates the origins and consequences of

the PCRD estimation bias following the theoretical framework described in Marshall (2022), and introduces

relevant mathematical notation. Section 3 proposes a method for eliminating the PCRD bias if all relevant

confounders are observed using a covariate-adjusted polynomial estimator. Moreover, it describes several

decompositions of the bias estimator that can be useful for applied research and public policy. Section 4

introduces the sensitivity analysis to account for possible omitted variables. Section 5 illustrates the practical

implications of my methodological framework using as an example the work of Bruce et al. (2022). Section

6 concludes.

2 The politician characteristic regression discontinuity design estimation
bias

In this section, I will briefly discuss the causes of the PCRD estimation bias and offer a mathematical formu-

lation to assist in its comprehension. I largely adopt the notation and terminology used in Marshall (2022)

to create a link between the two papers.

The PCRD estimation bias originates from the inability to distinguish between a politician’s trait X and

other attributes that may also impact an outcome variable Y . Following Marshall (2022), the PCRD bias

will likely emerge from two sources. On the one hand, it is highly unlikely that the characteristic X is ran-

domly assigned. That means candidates with feature X may systematically differ from politicians without

X in other personal traits. Therefore, since these disparities are systematic, they will also manifest when

comparing candidates running in close elections. For example, candidates from politically underrepresented

groups are more likely to have less experience in public office than their peers. As a result, disparities in

outcomes claimed to be caused by a politician’s ethnicity, gender, or religion might as well be explained by

their lack of experience in public office. Since many of these ancillary characteristics may be unobserved

or difficult to measure, disentangling the effect of X from other ascriptive characteristics constitutes a con-

2For a complete discussion on the matter, refer to Section 6.3 of Cinelli and Hazlett (2020a).
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founding problem. As in observational studies, being unable to isolate the contribution of the trait of interest

on the outcome via the RD design ultimately results in an estimation bias.

On the other hand, by focusing only on close elections, PCRD designs are likely to compare non-

representative samples of politicians, given only candidates with singular characteristics may end up in tight

electoral contests. This happens because conditioning in a narrow victory event is far from uninformative: if

the votes that a candidate obtains are largely determined by the trait X , then being in a close electoral com-

petition necessarily requires that other attributes must be unbalanced for both candidates to receive roughly

the same number of votes. These induced differences are referred to as compensating differentials, and their

influence on estimation can be viewed as a form of post-treatment bias3. Conceptually, this is a different

source of bias from the confounding problem since it doesn’t fade even if trait X is as-good-as-randomly

assigned. In realistic scenarios, practitioners should expect PCRD estimation bias to arise from both con-

founding and compensating differentials, potentially interacting in a way that estimation bias exceeds that

of an observational study contrasting the naive difference in outcomes between candidates of different types.

The intuition behind compensating differentials may be best understood within the context of an exam-

ple. There is a large body of literature suggesting the existence of a gender bias in politics4, which postulates

that the average voter prefers male leaders over female leaders because they believe male political leaders

are more capable in public office. As a result, if gender bias considerably influences voting decisions, a

contest between two candidates who are identical except for their gender will result in the male winning by

a large margin. Therefore, the fact that a male and a female finish in a close race suggests that something

else is compensating for the adversely perceived trait of being a woman. For example, women who end

up in close races may be considerably more educated and prepared than men. Alternatively, men in tight

electoral contests may be less popular than the average male politician.

For instance, Gagliarducci and Paserman (2012) leverage PCRD design to investigate whether the gen-

der of the chief executive affects the likelihood of the elected administration surviving until the end of its

mandate in a parliamentary system. Figure 1 empirically confirms that women involved in the close races

used for this study are systematically different from male candidates. For one, many attributes are systemati-

cally correlated with gender. In particular, female mayors elected by a narrow margin are disproportionately

less experienced, younger, and more likely to have never held a job. These facts are consistent with the

historical underrepresentation of women in the workforce and politics. For another, there is also suggestive

evidence that female candidates probably need to compensate with other positive traits to compete closely

with men. To see this, notice how elected women politicians in these races have significantly more education

3Post-treatment bias, also known as endogenous selection (Elwert & Winship, 2014) or collider bias (Pearl, 2009), is the dis-
tortion in the estimation of an average treatment effect resulting from including variables in estimation that are causally affected
by the treatment. Researchers may induce post-treatment bias in two ways: by conditioning the sample based on a post-treatment
variable or by controlling for one. Post-treatment bias can pose a threat to identification even in completely experimental designs.
For further information, please refer to the works of Acharya, Blackwell, and Sen (2016); Montgomery et al. (2018); Robins (2023),
and references therein.

4Some evidence of this phenomenon can be found in Lawless (2015).
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FIGURE 1: Compensating differentials in Gagliarducci and Paserman (2012)
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and are more charismatic than their male counterparts.

Consequently, PCRD designs identify not only the differences in outcome caused by trait X , but also

differences caused by other characteristics associated with having trait X in a close election. Unfortunately,

the latter represents a bias term that may misrepresent the size and sign of the target treatment effect. For

instance, Gagliarducci and Paserman (2012) argue that women have a higher probability of early resigna-

tion than men based on their gender. But Figure 1 shows this finding could also be (partially) explained by

women being comparatively less experienced and younger than their male counterparts. The above example

demonstrates how conventional PCRD designs frequently fail to achieve the desired causal effect unless

additional strong assumptions are made (Marshall, 2022, Proposition 3). Given this limitation, researchers

face two options. One possibility is that they acknowledge the difficulty of retrieving the desired effect and

interpret PCRD estimates as capturing both effects of X and all compensating differentials. Alternatively,

they can attempt to produce bounds or eliminate the estimation bias using additional information. This paper

centers its contribution on the possibility of the second idea.

2.1 The formal setup

Electoral district-level data is usually employed for estimating close election RD designs. Let Xid represent a

binary random variable, with Xid = 1 indicating that candidate i in district d has trait X . A pair of politicians

with the value of X will be referred to as being of the same type. Additionally, each candidate also has a

set of m accompanying characteristics Zid = (Zid1, · · · ,Zidm) that are both correlated with vote levels and an

interest district-level variable Yd . We will restrict to districts where the top two candidates are not the same

type.

Let V1d and V0d respectively denote the vote shares of the most popular politician of type Xid = 1 and

Xid = 0 in district d. For the sake of simplicity, candidate 1 will always denote the politician who possesses

the interest attribute (as in Xid = 1), whereas candidate 0 represents the politician who does not have the

feature. By considering only each district’s winner and runner-up candidate, the variable ∆d = V1d −V0d

reflects the percentage point difference in vote shares between the politician with Xid = 1 and the one with-

out. Thereby, this variable can act as a running variable for a sharp RD design to the extent that it perfectly

discriminates whenever a politician of type 1 wins the election over a candidate of type 0:

Xd :=

1 if ∆d ≥ 0,

0 if ∆d < 0.

Since observing Xd can be interpreted as a treatment status, the most natural way to think about causal

effects is in terms of potential outcomes. More precisely, prospects can be thought of in two separate dimen-

sions. The first is at the individual level, whenever candidate i wins and the outcome Yid(1) is observed, and

the second is when it loses and the outcome Yid(0) occurs. The second is at the district level, provided either
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candidate 1 or 0 must be elected. These two observations justify the outcome variable being expressed as

Yd = Yd(Xd) = XdY1d(1)+(1−Xd)Y0d(1)

A key feature of PCRD designs is that it does not compare winners to losers, but winners of different

types. To appreciate the difference, consider a typical work aiming to determine incumbency advantages

using an RD design. In such studies, the outcome variable is dummy variable Yid informing whether in-

dividual i is elected in district d in the current elections. Hence, to determine whether winning previous

elections affects the probability of reaching office, a researcher is interested in estimating the expected value

of Yid(1)−Yid(0). This is because this quantity reflects how much more probable candidate i is to win an

election given that they held office in the prior electoral term compared to a scenario in which they did

not. PCRD designs, in contrast, compare two candidates of opposing types. Moreover, the method cannot

provide any information about Yid(0) insofar as comparisons are made between winners.

Likewise, the same logic applies to the appointed politician’s accompanying characteristics Zid . Hence,

these attributes admit a representation using potential outcomes as

Zd = Zd(Xd) = XdZ1d +(1−Xd)Z0d

Finally, note that the target causal effect can be described as

τPCRD = E[Yd(1)−Yd(0)|∆d = 0],

which accounts for the expected difference in the outcome variable whenever a politician of type Xid = 1

wins the election by an infinitesimal margin over one of type Xid = 0.

2.2 Estimation using local polynomials

Because of their boundary properties, local polynomial estimators are the most frequently employed ap-

proach for estimating RD designs (Cheng, Fan, & Marron, 1997; Hahn, Todd, & Van der Klaauw, 2001).

This method consists of two stages. First, the researcher must choose a bandwidth h around the cutoff where

the estimation will occur. Next, practitioners must fit a local model Ỹ (∆d ,Xd ;θ), by estimating a parameter

vector θ using as a weighting scheme a kernel function K(·)5. The kernel function serves two purposes: it

limits the estimation to observations whose running variable scores fall within the bandwidth while assign-

ing more weight to units closer to a designated value. For PCRD designs, this threshold is 0, meaning that

the local polynomial θ̂ estimator is derived from a weighted least squares problem given by

θ̂(h) = argmin
θ

∑
d
(Yd − Ỹ (∆d ,Xd ;θ))2K(∆d/h)

As its name implies, local polynomial estimators result from requiring the local model Ỹ (∆d ,Xd ;θ) to

be a polynomial of degree p. In practice, PCRD designs frequently feature (but are not restricted to) a local

5A kernel function is a non-negative real-valued integrable function that is 1) symmetric and 2) integrates to one over its support.
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linear form such as6

Ỹd = Ỹ (∆d ,Xd ; θ̃) = α̃Y +Xd τ̃Y +∆d β̃Y−+(Xd ×∆d)β̃Y+ (2.1)

where θ̃ = (α̃Y , τ̃Y , β̃Y−, β̃Y+)
′ ∈ R4 are the parameters to be estimated using weighted least squares.

In particular, we are interested in τ̃Y since it captures the effect that Xd has on Ỹd at the threshold ∆d = 0.

It should be noted that all results in this paper are valid for any polynomial degree, despite the exposition

concentrating on a linear specification. Moreover, a complete description of the estimation procedure for an

arbitrary polynomial degree can be found in Appendix B.3.

Two sets of assumptions are required for these estimators to behave appropriately. On the one hand,

some regularity conditions on the conditional expectation functions are needed to ensure consistency and

asymptotic normality of the estimators. Appendix B.2 contains a detailed discussion of these requirements

as offered by Calonico, Cattaneo, Farrell, and Titiunik (2019b). On the other hand, RD designs require

an identification assumption for establishing causality, which is given by the following weak continuity as-

sumption(Hahn et al., 2001).

Assumption 1 (Local continuity). The potential outcomes Yd(Xd) satisfy

a) Continuity from above: lim
η↓0

E[Yd(1)|∆d = η ] = E[Yd(1)|∆d = 0]

b) Continuity from below: lim
η↑0

E[Yd(0)|∆d = η ] = E[Yd(0)|∆d = 0]

According to this assumption, the only way that potential outcomes can differ at the threshold is be-

cause a candidate of type Xd won the election. For this to hold true, the districts where a type 1 politician

barely wins must be comparable to those they narrowly lose. This requirement is reasonable in close elec-

tions because random factors, such as the weather on election day, may determine several election outcomes

whenever vote margins are tight7.

Under Assumption 1, some regularity assumptions and a suitable choice of bandwidths sequences8, the

weighted least squares estimator ˆ̃τY of τ̃Y identifies a causal effect

ˆ̃τY = lim
η↓0

{E rYd |∆d = ηs− lim
η↑0

{E rYd |∆d = ηs

P−→ lim
η↓0

E rYd |∆d = ηs− lim
η↑0

E rYd |∆d = ηs

= E rYd(1)|∆id = 0s−E rYd(0)|∆id = 0s

= E
“

Yid(1)|∆id = 0,Xid = 1,X jd = 0
‰

−E
“

Yid(1)|∆id = 0,Xid = 0,X jd = 1
‰

,

6Following Gelman and Imbens (2019), researchers frequently limit to linear or quadratic specifications (p = 1,2).
7Notably, the plausibility of this assumption has been thoroughly tested in practical scenarios with success (e.g. Eggers, Fowler,

Hainmueller, Hall, and Snyder (2015); Hyytinen, Meriläinen, Saarimaa, Toivanen, and Tukiainen (2018)).
8Bandwidth sequences hn should converge slowly to 0. More precisely, hn → 0 and nhn → ∞, where n denotes the sample size.
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where X jd is district d’s runner-up candidate type and ∆id = Vid −Vjd is the observed winner’s margin.

Notice that the second equality differs from the first in that it rewrites district-level outcomes Yd in terms

of candidate-level outcomes Yid . Since PCRD always compares winners, we only observe Yid(1) and not

Yid(0). Nevertheless, winners are of different types, thus changing the conditioning events. Since this is the

standard method to estimate PCRD, I will frequently refer to ˆ̃τY as τ̂PCRD.

2.3 Motivating the PCRD estimation bias

The outcome variable Yd in PCRD designs is likely to depend not only on the district’s characteristics but also

on the individual attributes of the elected politician. Therefore, the outcome variable should be a function of

the studied trait Xid , as well as the other individual-level characteristics Zid . Conveniently, we can represent

this dependence as

Yid(1) = m(∆id ,Zid)+ εd

where m(∆id ,Zid) = E[Yid(1)|∆id ,Zid ] is known as the associated regression function, and εd is an idiosyn-

cratic error term satisfying E[εd |∆id ,Zid ] = 0. While in practice, m(·, ·) is an unknown arbitrary function, I

will focus on a streamlined example to motivate how PCRD estimation bias emerges.

Assumption 2 (Simple data generation process). The data generating process of Yid(1) is

Yid(1) = τdXid +g(Zid)+ εd (2.2)

where g : Rm → R is some unknown smooth function.

Assumption 2 simplifies the expected theoretical relations between the outcome variable and the charac-

teristics of the elected politician by assuming that m(∆id ,Zid) = τdXid +g(Zid). While this functional form

facilitates exposition, it should be stressed that asymptotic bias will likely appear in PCRD designs with

arbitrary data generation processes (Marshall, 2022, Proposition 4).

Under Assumption 2, traditional local linear estimators can fail to produce consistent estimators of

τPCRD. To see this, note that

τ̂PCRD
P−→ E

“

Yid(1)|∆id = 0,Xid = 1,X jd = 0
‰

−E
“

Yid(1)|∆id = 0,Xid = 0,X jd = 1
‰

(2.3)

= τPCRD +
`

E
“

g(Zid)|∆id = 0,Xid = 1,X jd = 0
‰

−E
“

g(Zid)|∆id = 0,Xid = 0,X jd = 1
‰˘

PCRD estimation bias

since τPCRD = E[Yd(1)−Yd(0)|∆d = 0] = E[τd |∆d = 0]. Therefore, the term

bPCRD = E
“

g(Zid)|∆id = 0,Xid = 1,X jd = 0
‰

−E
“

g(Zid)|∆id = 0,Xid = 0,X jd = 1
‰

will skew estimation whenever the influence of ancillary characteristics on the outcome varies with the can-

didate’s type. This may occur when individual characteristics Zid and type Xid are systematically correlated,
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or when conditioning on a close election leads to compensating differentials. Under any of these circum-

stances, τ̂PCRD identifies not only the direct effect that trait X has on the outcome, but also the influence of

all other relevant characteristics disproportionately prevalent in either type in close elections.

Marshall (2022) made a significant contribution by demonstrating that the PCRD estimation bias repre-

sents a major threat to identification, given it is negligible only in a handful of razor-thin cases. To illustrate

this, consider a scenario where only one additional factor Zid , apart from the trait of interest, influences both

the outcome Yid and the number of votes Vid each candidate obtains. For simplicity, suppose that the votes

cast in favor of a candidate depend on the relative endowment of ascriptive characteristics and on the imbal-

ance of some idiosyncratic shocks (ξid ,ξ jd) with mean zero. For instance, we could model this dependence

as

Vid = ζ1

ˆ

Xid −X jd

2

˙

+ζ2

ˆ

Zid −Z jd

2

˙

+

ˆ

ξid −ξ jd

2

˙

where j denotes the characteristics of the opposing candidate. Under this assumption, the voting margin

between the best-ranked candidate of type 1 and of type 0 in each district can be expressed as follows:

∆d =V1d −V0d = ζ1 +ζ2(Z1d −Z0d)+(ξ1d −ξ0d)

Hence, the event of a close election (∆d = 0) implies that

Z1d −Z0d

Compensating differential

=
ξ0d −ξ1d −ζ1

ζ2
̸= 0

this is, conditioning on a close race requires that Z1d ̸= Z0d in district d unless the accompanying term is

exactly zero. Even when this may be the case for a particular district, on average, we would still observe

that E[Z1d |∆d = 0] ̸= E[Z0d |∆d = 0], thus giving way to estimation bias.

From a broader perspective, conditioning on a close race is, by definition, sample selection based on a

post-treatment variable, given that votes depend directly on trait X (the treatment). Hence, the bias caused

by compensating differentials is a form of post-treatment bias. Specifically, because we ultimately end

up comparing dissimilar groups, conditioning on a close race precludes the local comparability needed to

retrieve causal effects via RD designs. More importantly, notice this pattern holds regardless of what Zid and

Xid are distributed and how they interrelate. For instance, PCRD estimation bias will arise even when Xid

is independent of Zid , as well as in a situation in which there are no systematic differences in Zid between

candidates of opposing types in the population ( i.e., E[Z1d −Z0d ] = 0).

3 PCRD estimation bias correction

Section 2 showed that, except in unlikely circumstances, conventional PCRD design estimations have

asymptotic biases. Hence, according to Marshall (2022), a better tactic is to limit or correct the estimation
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bias rather than invoking unsuitable assumptions. In this section, I illustrate that when all of the politician

characteristics that drive the bias are observed, a slight modification to the local polynomial estimator can

accurately account for the bias under mild assumptions. Moreover, this adjusted estimator allows for several

informative decompositions of the PCRD bias.

3.1 Motivation: Bias correction with a linear regression function

I begin by constructing a solution for the most basic scenario: the situation where Assumption 2 holds and

g(·) is linear. This case was presented by Marshall (2022, Equation 9) as an example of how bounding and

correcting effect magnitudes could strengthen the credibility of PCRD designs. Despite its apparent limita-

tions, this case is useful as it effectively conveys most of the concepts needed to create a general solution.

Consequently, I begin by considering a simplified data generation process.

Assumption 2′. The data generating process of Yid(1) is

Yid(1) = τdXid +
m

∑
l=1

γl Zidl + εd ; for some γ = (γ1, · · · ,γl)
′ ∈ Rm (3.1)

By invoking Assumption 2′ and referring to equation (2.3), the bias takes a simple form:

bPCRD = E
“

g(Zid)|∆id = 0,Xid = 1,X jd = 0
‰

−E
“

g(Zid)|∆id = 0,Xid = 0,X jd = 1
‰

=
m

∑
l=1

γl
`

E
“

Zidl|∆id = 0,Xid = 1,X jd = 0
‰

−E
“

Zidl|∆id = 0,Xid = 0,X jd = 1
‰˘

Which means that

τ̂PCRD = ˆ̃τY
P−→ τPCRD +

m

∑
l=1

γlδl = τPCRD +δ
′
γ; δ = (δ1 δ2 · · · δm)

′ ∈ Rm

with

δl = δ
+
l −δ

−
l = E

“

Zidl|∆id = 0,Xid = 1,X jd = 0
‰

−E
“

Zidl|∆id = 0,Xid = 0,X jd = 1
‰

In addition to being concise, the linear case clearly illustrates the nature of the estimation bias. In this

setting, the total bias is the sum of distortions introduced by each ancillary attribute. Each of these devia-

tions is the product of two elements. For one, δl accounts for the average difference in attribute Zidl between

politicians of type Xid = 1 and type Xid = 0 who competed in close races. In particular, δl might reflect

compensating differentials induced by conditioning on tight electoral contests. Therefore, if gender is the

interest trait, δl could represent how much more educated women are than men on average when they par-

ticipate in close elections. For another, γl informs how relevant attribute Zidl is to determining the outcome

variable Yd
9. Hence, a simple mnemonic of the general bias structure is that every confounder distorts “its

impact times its imbalance”.

9More precisely, γl is the marginal effect on m(∆id ,Zid) of increasing a unit of Zidl .
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Furthermore, the linear structure makes bias correction relatively simple. In the light of Rosenbaum

(2002) and Marshall (2022), if there existed consistent estimators δ̂l and γ̂l of δl and γl , then a consistent

estimator τ̂BC
PCRD of τPCRD could be obtained through

τ̂
BC
PCRD = τ̂PCRD −

m

∑
l=1

γ̂l δ̂l
P−→ τPCRD

Yet, is it possible to construct these estimators using only the information from the original design? On

the one hand, consistent estimates of δl can potentially be retrieved under an additional assumption:

Assumption 3 (Local continuity of covariates). The potential outcomes Zd(Xd) satisfy

a) Continuity from above: lim
η↓0

E[Zd(1)|∆d = η ] = E[Zd(1)|∆d = 0]

b) Continuity from below: lim
η↑0

E[Zd(0)|∆d = η ] = E[Zd(0)|∆d = 0]

Like Assumption 1, Assumption 3 postulates that any observed discrepancies in the average traits of

elected politicians in close races can only be attributed to the candidates’ type. For this to be credible, close

races should be able to rule out other district-level characteristics that can explain these discrepancies. For

instance, if places where candidates of type 1 win by a small margin are systematically more urban than

those in which politicians of type 0 triumph, then differences in education levels may be due to development

levels rather than the politicians’ type. Fortunately, in most empirical works, any credible scenario where

Assumption 1 is true is also likely to constitute a situation where 3 is also valid.

Under Assumption 3, an RD design using local model (2.1) and as outcome variable XdZdl leads to a

local linear estimator satisfying

ˆ̃τXdZdl = lim
η↓0

{E rXdZdl|∆d = ηs−
�����������:0
lim
η↑0

{E rXdZdl|∆d = ηs
P−−→ E

“

Zidl(1)|∆id = 0,Xid = 1,X jd = 0
‰

= δ
+
l

Likewise,
ˆ̃τ(1−Xd)Zdl

P−→ δ
−
l

so that
ˆ̃τXdZdl − ˆ̃τ(1−Xd)Zdl

P−→ δ
+
l −δ

−
l = δl.

Hence, estimating traditional RD designs for every politician’s trait Zidl results in a consistent estimator

of δl .

Nevertheless, even when consistent estimates of δl can be produced under reasonable assumptions, iden-

tifying parameter γl is more challenging. Specifically, the challenge lies in finding credible identification

strategies that enable the separate identification of each parameter γl . Provided this limitation, Marshall

(2022) suggests examining the sensitivity of their results to plausible values of γl . On the contrary, I show

that, as long as all relevant covariates are observed, γ can be consistently estimated without the need for a
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separate identification strategy

Calonico et al. (2019a) discuss a covariate-adjusted local polynomial estimator to leverage additional in-

formation to produce a more efficient estimator in RD designs. Interestingly, for the approach to be effective,

the covariates utilized for the adjustment must not vary at the threshold because doing so would introduce

a bias to estimation. In the following paragraphs, I’ll show how this estimator can successfully remove the

bias from τ̂PCRD. In essence, the idea is that using the covariate-adjusted estimator introduces a new bias

into the PCRD estimator, which, if appropriately specified, may be able to cancel out the original PCRD bias.

In covariate-adjusted local polynomials estimators, rather than modeling the conditional expectation

function locally using only the running variable as in (2.1), we want also to include the covariates in the

functional form. There are several ways to accomplish this, but Calonico et al. (2019a) opt for a linear-in-

parameters specification. In other words, this means that the canonical local linear model can be formulated

as10

9Yid = 9Y (∆d ,Xd ,Zid ; 9θ) = 9αY +Xd 9τY +∆id
9βY−+(Xd ×∆d) 9βY++XdZ′

id 9γ++(1−Xd)Z′
id 9γ− (3.2)

where 9θ = ( 9αY , 9τY , 9βY−, 9βY+, 9γ+, 9γ−)∈R4×Rm×Rm are the parameters to be estimated using weighted

least squares. I will now concentrate on understanding the properties of the estimator 9̂τY of 9τY , as in model

(2.1). To do so, I will first uncover a relationship between the new estimator 9̂τY and the traditional estimator

τ̂PCRD = ˆ̃τY .

Theorem 1. Consider the local linear estimators ( 9̂αY , 9̂τY , 9̂βY−, 9̂βY+, 9̂γ+, 9̂γ−) ∈ R4 ×Rm ×Rm resulting from

an RD design using (3.2) as local model and Yd as outcome variable. Then numerically

9̂τY = ˆ̃τY −
”

( ˆ̃τZ,+)
′ 9̂γ+− ( ˆ̃τZ,−)

′ 9̂γ−

ı

= τ̂PCRD −
”

( ˆ̃τZ,+)
′ 9̂γ+− ( ˆ̃τZ,−)

′ 9̂γ−

ı

where

ˆ̃τ ′
Z,+ =

` ˆ̃τXdZd1 , · · · , ˆ̃τXdZdm

˘

1×m ; ˆ̃τ ′
Z,− =

` ˆ̃τ(1−Xd)Zd1 , · · · , ˆ̃τ(1−Xd)Zdm

˘

1×m

Proof. This proposition is formulated assuming that a linear model (with respect to running variable) is used

to specify local models (2.1) and (2.2). However, in Appendix B.4, I show how the equivalence sill holds

for any local polynomial of degree p.

■

Theorem 1 illustrates the consequences of using the covariate-adjusted local polynomial estimator. Ob-

serve that applying a model like (3.2) results in an estimator that is identical to that of (2.1), except for

the additional term −[( ˆ̃τZ,+)
′ 9̂γ+− ( ˆ̃τZ,−)

′ 9̂γ−]. As a result, whenever τ̂PCRD retrieves the desired effect in a

particular RD design, including covariates introduces an undesirable bias term. Because of this, Calonico et

al. (2019a) claim this particular covariate adjustment is useful only under conditions where this bias is zero.

10It is possible to include additional district-level covariates that do not vary in the threshold as in Calonico et al. (2019a) to
reduce variance further.
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However, I suggest that whenever the original estimator does not identify the target effect, this new term has

the potential of correctly recentering the estimate. To assess this possibility, it is critical to determine what
9̂γ+ and 9̂γ− capture.

Theorem 2. Under Assumption 2′, regularity assumptions RA-1, RA-2, RA-3, and a suitable choice of

bandwidths sequences,

( 9̂γ+, 9̂γ−)
′ P−→ (γ,γ)′

Proof. See Appendix B.5.

■

Despite being just nuisance parameters in the original formulation, Theorem 2 unveils that 9̂γ+ and 9̂γ− are

the estimators needed for bias correction whenever Assumption 2′ holds. Nonetheless, it should be stressed

that this is possible only because all relevant confounders are observed. Without this assumption, notice that

i) not all of the required “gammas” could be estimated, and ii) even those that could be estimated might be

biased due to the omitted variable and post-treatment bias. Following this discussion, I summarize the main

results of this section in the following theorem.

Theorem 3. Under Assumptions 1 and 3, together with the hypothesis required for Theorem 2,

b̂Linear
PCRD = ( ˆ̃τZ,+)

′ 9̂γ+− ( ˆ̃τZ,−)
′ 9̂γ−

P−→ δ
′
γ = bPCRD

which means that

τ̂
BC,Linear
PCRD = 9̂τY = τ̂PCRD −

”

( ˆ̃τZ,+)
′ 9̂γ+− ( ˆ̃τZ,−)

′ 9̂γ−

ı

P−→ (τPCRD +bPCRD)−bPCRD = τPCRD

Proof. See Appendix B.6.

■

Theorem 3 states that whenever 1) Assumption 2′ holds and 2) all accompanying characteristics that may

induce the bias are observed, using the covariate-adjusted local polynomial estimator effectively identifies

the target effect. However, to what extent are these results rooted in assuming a linear data generation

process? I explore this question in the next section.

3.2 Bias correction in the general case

First, I would like to highlight the main takeaways from the linear case. On the one hand, by specifying an

appropriate local model, local polynomial estimators can potentially eliminate the PCRD bias. On the other

hand, this procedure yields an independent estimator of the bias b̂Linear
PCRD . These two findings motivate the

following question: is it possible to modify the local model in such a way that the resulting local polynomial

estimates replicate the properties exhibited in the linear case while imposing no functional form require-

ments?
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Recall that regression functions are a general way of modeling the functional dependence between a

politician’s characteristics and the outcome. To extend these relationships to the district level, consider the

following definitions.

m+(u,Zd) = lim
η↓0

E[Yd |Zd ,∆d = u+η ] and m−(u,Zd) = lim
η↑0

E[Yd |Zd ,∆d = u+η ]

In essence, m+(u,Zd) is the expected outcome level whenever the observed vote margin ∆d is just above

u and the winning candidate has attributes Zd . Thereby, in the particular case where u = 0, the function

m+(0,Zd(1)) reflects the expected outcome level whenever candidate of type Xid = 1 wins by a small margin

and possesses attributes Zd(1). Similarly, m−(0,Zd(0)) describes a similar quantity, but in the case where

the politician of type Xid = 0 triumphs by a small margin and has characteristics Zd(0). Nonetheless, the

difference m+(0,Zd(1))−m−(0,Zd(0)) will not be informative of a causal effect unless a comparability

assumption, such as Assumption 1, holds. This condition is stated in Assumption 4.

Assumption 4. The joint conditional expectation function of potential outcomes Yd(Xd), given by

E[Yd(1)|Zd(1) = z,∆d = u] and E[Yd(0)|Zd(0) = z,∆d = u],

are continuous at u = 0 for any given z in the support of Zd .

Assumption 4 ensures that m+(0,Zd(1)) and m+(0,Zd(0)) are well-defined. Intuitively, this assumption

postulates that candidates of either type that barely lose and barely win are comparable once all potential

confounders are controlled. Therefore, this condition can be viewed as a relaxed version of Assumption 1

in that confounder imbalances at the threshold, such as compensating differentials, are possibly allowed.

Furthermore, Assumption 4 guarantees that conditional comparisons between politicians of opposing

types account for proper causal effects. In other words, by fixing a characteristic vector z, then m+(0,z)−
m−(0,z) = E[Yd(1)−Yd(0)|Zd = z,∆d = 0], which represents the average treatment effect for electing a

politician with Xid = 1 and accompanying characteristics z by a small vote margin, over a candidate with

Xid = 0 with the same attributes. However, τPCRD is an unconditional effect, to the extent that it informs the

effect of an average politician, regardless of its ancillary traits, that is involved in close races. Hence, it is

necessary to prove that Assumption 4 is enough to identify the unconditional effect.

Theorem 4 (Frölich and Huber (2019a), Theorem 1). Consider Assumption 4 and regularity conditions

RA-4, then τPCRD can be identified non-parametrically as

τPCRD = E[Yd(1)−Yd(0)|∆d = 0]

= E[m+(0,Zd)−m−(0,Zd)|∆d = 0]

=
∫

`

m+(0,z)−m−(0,z)
˘

˜

f+Zd(0)|∆d
(z|0)+ f−Zd(1)|∆d

(z|0)
2

¸

dz
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where f−Zd(0)|∆d
(·|0) and f+Zd(1)|∆d

(·|0) are, respectively, the probability density functions of the random

vectors Zd(0)|∆d = 0 and Zd(1)|∆d = 011.

Proof. See Appendix B.7.

■

Theorem 4 attests that τPCRD is identified under Assumption 4. Furthermore, it offers a way of calcu-

lating τPCRD out of conditional comparisons, even when there is no information about the underlying data

generation process. Essentially, the procedure entails averaging conditional average treatment effects using

as weights the likelihood that each trait is observed in a tight electoral contest. However, since the potential

traits can either originate from Zd(1) or Zd(0) in a close race, the probability of observing a particular at-

tribute vector requires averaging two different distributions.

Now, is it possible to leverage the non-parametric identification of the causal effect to specify an appro-

priate local polynomial model? Consider a simple extension to model (3.2) given by

9Yid = 9αY +Xd 9τY +∆id
9βY−+(Xd ×∆d) 9βY++Xd(Zid − c)′ 9γ++(1−Xd)(Zid − c)′ 9γ− (3.3)

where c ∈ Rm is some fixed deterministic vector. By choosing this local model, we are intuitively

asserting that
m+(0,Zd)≈ 9αY + 9τY +(Zd − c)′ 9γ+

m−(0,Zd)≈ 9αY +(Zd − c)′ 9γ−

From which follows

m+(0,Zd)−m−(0,Zd)≈ 9τY +(Zd − c)′( 9γ+− 9γ−)

Thus, by taking expectations at both sides of the expression, Theorem 4 hints that

τPCRD = E[m+(0,Zd)−m−(0,Zd)|∆d = 0]≈ 9τY +(E[Zd |∆d = 0]− c)′( 9γ+− 9γ−)

This expression implies that the covariate-adjusted local model will approximate the desired effect ( 9τY ≈
τPCRD) so long as i) 9γ+ = 9γ−, of which the “linear case” is a particular instance; and/or, ii) c =E[Zd |∆d = 0].

On the one hand, i) is out of our control since its fulfillment depends on the (unknown) underlying data

generation process. Condition ii), on the other hand, motivates a simple systematic method to remove bias:

estimating model (3.3), replacing c with a consistent estimator of E[Zd |∆d = 0]. Such an estimator is given

by12

Z̄ = ( ˆ̃τZ,++ ˆ̃τZ,−)/2,

11In the case covariates are discrete, the result still holds by switching the corresponding integrals to sums and probability density
functions to probability mass functions.

12A similar argument to Theorem 4’s proof guarantees that

Z̄ P−→
µZ+(0)+µZ−(0)

2
= E[Zd |∆d = 0]
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through which we can specify the “recentered” covariate-adjusted local linear model as

:Yid = :αY +Xd :τY +∆id
:βY−+(Xd ×∆d):βY++Xd(Zid − Z̄)′:γ++(1−Xd)(Zid − Z̄)′:γ− (3.4)

Model (3.4) is essentially the same as model (3.2), except that observed confounders are demeaned using

Z̄. As a result, rather than controlling for the politician’s characteristics, the model considers how distinct

these traits are from those of the typical politician running in close elections. Referring to the linear case,

this is intuitively the correct specification because the bias is induced by relative endowments of character-

istics rather than their absolute levels. Thus, flexibly controlling for “recentered” confounders may restore

the identification of the unconditional causal effect. With minor changes, this idea has also been used to

address similar issues in other causal identification methodologies, namely, in randomized controlled trials

(Imbens & Wooldridge, 2009, Section 5.3), some instrumental variable designs (Borusyak & Hull, 2020),

differences-in-differences (Wooldridge, 2021), and experiments featuring multiple treatments (Goldsmith-

Pinkham, Hull, & Kolesár, 2022).

Consequently, the major result of this section is to demonstrate that the local polynomial estimator

resulting from using model (3.4) can consistently estimate τPCRD regardless of the underlying regression

function. I formalize these ideas in the following theorem.

Theorem 5. Consider Assumption 4 and regularity conditions RA-1, RA-2, RA-3, RA-4 and RA-5 hold, then

a)

τ̂
BC
PCRD = :̂τY = τ̂PCRD − 1

2

”

( ˆ̃τZ,+− ˆ̃τZ,−)
′(:̂γ++ :̂γ−)

ı

b)

τ̂
BC
PCRD

P−→ τPCRD

c)

b̂PCRD =
1
2

”

( ˆ̃τZ,+− ˆ̃τZ,−)
′(:̂γ++ :̂γ−)

ı

P−→ bPCRD

Proof. See Appendix B.8.

■

Overall, Theorem 5 shows that the general unbiased estimator τ̂BC
PCRD = :̂τY has the same desirable qual-

ities as its linear counterpart τ̂
BC,Linear
PCRD = 9̂τY , with the added benefit of not relying on a particular functional

form of the regression function. Indeed, part a) is the analog of Theorem 1, where covariate adjustment

using model (3.4) introduces an additional term to the original PCRD estimator τ̂PCRD. Next, in part b), I

prove that this extra bias term asymptotically removes PCRD estimation bias, thus mimicking the result of

the linear case. Finally, in part c), I conclude that the procedure yields a natural estimator for the bias, which

where µZ−(0) = E[Zd(0)|∆d = 0] and µZ+(0) = E[Zd(1)|∆d = 0]. While any consistent estimator of E[Zd |∆d = 0] will ensure
overall consistency, using Z̄ significantly simplifies statistical inference and bias decompositions analysis, as well as leaves simple
expressions when investigating bias sensitivity to omitted variables that will be introduced later. As a result, determining whether
this is the best option for the estimator’s asymptotic properties is beyond the scope of this paper.
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can be used to study several decompositions of the bias term and do sensitivity analysis. The discussions in

the next sections will revolve around these two directions.

Furthermore, for usual bandwidth choices, the covariate-adjusted estimator τ̂BC
PCRD = :̂τY and the bias es-

timator b̂PCRD are also asymptotically normal. To ease exposition, I leave optimal bandwidth choice and

statistical inference details to Appendix B.9. Moreover, the resulting estimator is often more efficient than

τ̂PCRD. For instance, Calonico et al. (2019a, p. 448) prove that variance reduction is guaranteed whenever the

influence of the additional covariates on the outcome near the cutoff is roughly the same for both control and

treatment units (:̂γ+− :̂γ−
P−→ 0). This indicates that τ̂BC

PCRD is potentially an overall better point estimate, in an

MSE sense, than τ̂PCRD provided that it can simultaneously reduce bias and variance. Finally, the resulting

estimator exhibits the same convergence rates as univariate nonparametric regressions (n−2/5), which means

its performance does not depend on the number or nature of the covariates (i.e. no curse of dimensionality).

In Appendix A, I test some of these properties using Monte Carlo simulations.

Another significant implication of this result is that controlling for all relevant confounders can elimi-

nate both confounding and post-treatment bias. While correlated characteristics are typically addressed by

adjusting for omitted covariates, post-treatment bias is not usually considered to be resolved through co-

variate adjustment. Notably, my estimator can recover the actual causal effect despite the presence of both

sources of bias. However, the ability to correct estimation bias remains dependent on observing all relevant

confounders, a condition seldom or never met in practice. Even in the face of this constraint on its empiri-

cal application, constructing an estimate that solves the problem under specific circumstances is important

because it allows benchmarking of bias in real-world scenarios. Section 4 will discuss this idea in depth.

3.3 Bias decomposition

In this section, I discuss why the bias term is an economically meaningful quantity and how Theorem 5 can

help us understand the forces that drive it.

Recall that the traditional PCRD estimator τ̂PCRD reflects the outcome difference resulting from contrast-

ing locations with and without an elected politician with characteristic X . Although this comparison does

not fulfill the aim of PCRD designs of detecting the effect that having characteristic X has on the result, this

does not mean that this quantity is not in itself economically meaningful. In fact, studying τ̂PCRD can still

result very insightful for formulating public policy. To illustrate this point, I will formulate an example.

Returning to the question of whether women are more effective in positions of authority than men,

let’s assume that a specific study finds that locations in which women were elected had greater success in

reducing domestic violence than those which appointed men (τ̂PCRD < 0, when Yd is the number of cases).

Although the existence of a PCRD bias is likely, this finding informs a plain fact: places where women

were elected, for whatever reason, had lower domestic abuse than those where men won the elections. As

previously discussed, the part that remains obscure is, however, why are locations with elected women able

19



to decrease this indicator. Is it because being a woman allows them to attain this reduction in domestic

violence (τPCRD)? Or is it because women in close races have distinctive characteristics that enable them to

perform better in office (bPCRD)? Indeed, this partition is evident from the PCRD bias formula.

τ̂PCRD
P−→ τPCRD

The part explained
by gender

+ bPCRD

The part explained by other characteristics
correlated with gender in close races

From the public policy standpoint, even when gender alone is not driving the differences, it would still

seem desirable to know what explains the positive outcome in these locations. I will show that this knowl-

edge can be acquired by decomposing the bias. Imagine a researcher uses the bias-corrected statistic in the

described scenario and finds that τ̂BC
PCRD ≈ 0. Hence, it must be the case that other characteristics are driving

the negative effect, leading to several relevant follow-up questions. For instance, which characteristics drive

the negative effect?

Referring to the mnemonic presented in Section 3.1, the bias may originate from unbalanced charac-

teristics between candidates in a close race (imbalance) or from differences in how these traits affect the

outcome (impact). One possibility for the observed discrepancies is that women, on average, possess differ-

ent relevant attributes that account for better performance in violence rates. Alternatively, these attributes

may have a larger influence on the outcome (a larger marginal effect), leading to different results even when

traits are the same. Understanding the source of the bias is critical for determining which characteristics of

politicians are important in reducing domestic violence and hypothesizing what might happen in scenarios

other than close races.

Suppose via a decomposition, we identify that the improvement in domestic violence indicators is at-

tributable mainly to education levels. This is expected since women must compensate with other favorable

characteristics, such as being more educated, to compete in close races. Now, imagine that an additional

year of education is just as important in influencing the outcome for men as it is for women. Endowment

differences would then need to explain the positive surplus: women outperform men in close races because

they are more educated. As a result, whenever men and women with comparable education levels compete,

no net effect on abuse rates can be anticipated because the effect that should prevail in this situation is the

direct gender component, which is null (τPCRD ≈ 0). Alternatively, the reason why women outperform men

in close races may be primarily because their attained education levels matter more for outcomes than men.

In this circumstance, gender does have a role, to the extent that it reinforces the schooling effect. Consider-

ing this information, we can still anticipate a favorable effect if men and women compete with comparable

levels of education based on this complementarity.

I will now show how these comparisons can be constructed from Theorem 5.

Decomposition by individual characteristics: The linearity of the model provides a way to identify

separately the contribution of each characteristic. Namely, observe that
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b̂PCRD =
m

∑
l=1

«

(:̂γ−)l +(:̂γ+)l

2
( ˆ̃τXdZdl − ˆ̃τ(1−Xd)Zdl

)

ff

=
m

∑
l=1

b̂l

Hence, b̂l is the part of the bias explained by characteristics Zidl . Intuitively, as in the linear case, the

amount of bias that each confounder contributes is “its impact times its imbalance”. On the one hand,
ˆ̃τXdZdl − ˆ̃τ(1−Xd)Zdl

measures how dissimilar politicians of the type Xid = 1 and Xid = 0 involved in a close

elections are. On the other hand, (:̂γ−)l/2+(:̂γ+)l/2 describes the extent to which this imbalance impacts the

outcome on average.

A “Kitagawa-Oaxaca-Blinder” decomposition: The Kitagawa–Oaxaca–Blinder decomposition (Blin-

der, 1973; Kitagawa, 1955; Oaxaca, 1973) is used to determine whether an observed difference between

two groups is attributable to disparities in factor endowments, the differential impact of these factors on the

outcome, or a combination. To derive a similar decomposition for the bias, observe that :̂γ+ = :̂γ−+(:̂γ+− :̂γ−).

Then, it follows that

b̂PCRD = :̂γ ′−
` ˆ̃τZ,+− ˆ̃τZ,−

˘

Due to differences in endowments

+
1
2

` ˆ̃τZ,+− ˆ̃τZ,−
˘′
(:̂γ+− :̂γ−)

Due to differences in how
each type’s attributes
impact the outcome

Hypothesizing potential effects outside of close elections can be a particular benefit of doing this de-

composition. For instance, imagine that differences in endowments primarily cause bias. Then, we could

anticipate a difference in the outcome of about τ̂BC
PCRD in elections where candidates of opposing types are

very similar. On the contrary, whenever bias is greatly explained by differences in the impact of these at-

tributes, we cannot guarantee that τ̂BC
PCRD will be a good approximation of the net effect of the outcome even

when candidates have comparable traits13.

The “mixed” decomposition: The mixed decomposition combines the preceding partitions. To see

how, remark that

b̂PCRD = :̂γ ′−
` ˆ̃τZ,+− ˆ̃τZ,−

˘

+
` ˆ̃τZ,+− ˆ̃τZ,−

˘′
(:̂γ+− :̂γ−)/2

=
m

∑
l=1

( ˆ̃τXdZdl − ˆ̃τ(1−Xd)Zdl
)(:̂γ−)l +((:̂γ+)l − (:̂γ−)l)( ˆ̃τXdZdl − ˆ̃τ(1−Xd)Zdl

)/2

=
m

∑
l=1

Êl + Îl

13As noted by Fortin, Lemieux, and Firpo (2011), there can be some interpretational challenges for the KOB decomposition
whenever there are categorical variables (with more than two categories). First, since categorical variables lack a natural zero, the
reference point must be determined arbitrarily (i.e. which group to omit for estimation). The second issue is that omitting one
category to determine the coefficients of the other categories renders it impossible to separate the part of the decomposition that can
be attributed to group membership (at which we aim) from the part attributed to variations in the coefficient of the base or omitted
category.
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As in the aggregate decomposition, Êl represents the portion of b̂l that is attributable to differences in

endowments in Zidl . Likewise, Îl accounts for the part of b̂l that is explained by candidates of type Xid = 1

being able to influence more or less attribute Zidl than politicians with Xid = 0 in the outcome.

The “mixed” decomposition is particularly useful to understand why a politician of type Xid = 1 is more

or less successful than a candidate with Xid = 0. To put this idea into context, think about a study that focuses

on the influence of a politician’s pre-office vocation on some downstream outcome. For example, Kirkland

(2021) and Szakonyi (2021) inquire whether businesspeople perform better in public office. Allegedly, hav-

ing prior experience in management and a result-oriented mindset constitute an ideal skill set to govern, thus

making businesspeople more efficient. Therefore, when a politician comes from a business background,

their prior work experience and education may be relatively more important to their public success than in

other circumstances. In particular, this mechanism would be supported by a net effect partially explained by

a comparative advantage of businessmen and businesswomen using their education levels and years of work

experience (i.e., a large Îl).

Finally, all decomposition components have a known asymptotic distribution as described in Appendix

B.9, rendering statistical inference for each separate component possible.

4 Sensitivity analysis: can we assess how credible are PCRD designs?

In Section 3, I demonstrated that a covariate-adjusted local polynomial estimator could eliminate the PCRD

estimation bias whenever all confounder characteristics are observed. However, in most applications, not all

relevant candidate traits will be available in the data. For one, obtaining high-quality individual-level data on

politicians may be difficult because such information is either restricted or nonexistent, particularly in low-

and middle-income countries14. For another, many important individual attributes influencing public policy,

such as motivation (Canon, 1993) or preparation (Carson, Engstrom, & Roberts, 2007), are by definition

difficult to observe or measure.

Moreover, the set of possible omitted confounders can be enlarged by conditioning on close races. This

is because compensating differentials can generate artificial differences in traits where there is no visible

difference in the overall population. For instance, continuing on the gender example, while men and women

are equally intelligent in the aggregate, women winning by a close margin over men may be relatively

smarter than their male counterparts. As a result, intelligence would be a confounding factor in a PCRD

design despite not being one in an observational study comparing outcomes by gender.

Considering these difficulties, covariate adjustment is unlikely to eliminate estimation bias fully. As a

result, in addition to controlling for selection on observables, it would be desirable to conduct a “sensitiv-

14There are notable exceptions to this restriction, such as fine-grained administrative records in Sweden (See Dal Bó, Finan,
Folke, Persson, and Rickne (2017)).
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ity analysis” to determine how vulnerable a result is to unobserved confounding and post-treatment bias.

Broadly, these methodologies have two main purposes. First, they aim to describe the type of unobserved

confounders that would significantly alter the conclusions about the estimated causal effect. Second, based

on the research design, available data, and expert knowledge, they assess the likelihood that such problem-

atic confounding can exist. Combining these two pieces of knowledge can strengthen the validity of the

estimated effects and create plausible bounds for the causal effect.

This section proposes a sensitivity analysis framework tailored to PCRD designs. My proposal is primar-

ily inspired by Cinelli and Hazlett (2020a), who developed an analogous framework for addressing omitted

variable bias in linear regressions, and which I will extend using the results of Section 3.

4.1 How problematic can an unobserved confounder be?

Let Zd be the observed characteristics of the elected politician in district d. Suppose there exists a single

unobserved trait Ud , which is a potential confounder to estimating the effect of attribute Xd on Yd . It follows

from Theorem 5 that estimating the local model

:Yid = :αY,Full +Xd :τY,Full +∆id
:βY−,Full +(Xd ×∆d):βY+,Full +Xd(Zid − Z̄)′:γ+,Full (4.1)

+(1−Xd)(Zid − Z̄)′:γ−,Full +Xd(Uid −Ū):ρ+,Full +(1−Xd)(Uid −Ū):ρ−,Full

would yield a consistent estimator of the target causal effect insofar as :̂τY,Full
P−→ τPCRD. However, since Ud

is unobserved, researchers are limited to estimating the restricted model

:Yid = :αY,Res +Xd :τY,Res +∆id
:βY−,Res +(Xd ×∆d):βY+,Res (4.2)

+Xd(Zid − Z̄)′:γ+,Res +(1−Xd)(Zid − Z̄)′:γ−,Res

Following this perspective, to assess the extent to which omitting a confounder can misdirect estimation,

it is sufficient to understand how :̂τY,Res compares with the desired estimate :̂τY,Full . Therefore, the discrepancy

of these two quantities, given by yBias = :̂τY,Full − :̂τY,Res, is an estimate of the “residual” estimation bias after

controlling for a set of observable variables. Moreover, observe that

yBias = :̂τY,Full − :̂τY,Res

= (:̂τY,Full,+− :̂τY,Full,−)− (:̂τY,Res,+− :̂τY,Res,−)

= (:̂τY,Full,+− :̂τY,Res,+)

How different models are
at the right of the threshold.

−(:̂τY,Full,−− :̂τY,Res,−)

How different models are
at the left of the threshold.

which means that the bias can be alternatively described in terms of how different the estimators derived

from each model are on either side of the threshold. Next, the linear structure of the bias-corrected estimator
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enables an explicit formulation of yBias in terms of the complete and the restricted model. In particular,

Proposition B.1 of Appendix B.10 attests that:

:̂τY,Res,+− :̂τY,Full,+ = :̂ρ+,Full :̂τUd−Ū ,+ :̂τY,Res,−− :̂τY,Full,− = :̂ρ−,Full :̂τUd−Ū ,−

where :̂τU−Ū ,+ and :̂τU−Ū ,− would be the estimates at the right and the left side of the threshold of

using model (3.4) on Ud − Ū as the dependent variable. As in the case of linear regressions, the former

result provides an “omitted variable bias” formula that enables us to assess how the omission of covariates

we wished to have controlled for could affect our inferences. Furthermore, notice the difference between

the estimators has a similar structure to the decompositions in Section 3.3, where the bias depends on the

imbalance of the confounder (:̂τUd−Ū ,+ − :̂τUd−Ū ,−) and its differential impact on the outcome ( :̂ρ+,Full −
:̂ρ−,Full):

yBias = :̂ρ+,Full(:̂τUd−Ū ,+− :̂τUd−Ū ,−)

Bias due to imbalance
on unboservables

+ :̂τUd−Ū ,−( :̂ρ+,Full − :̂ρ−,Full)

Bias due to differences
on how unboservables
influence the outcome

Following the Frisch–Waugh–Lovell theorem, each bias component can be intuitively interpreted in

terms of covariances and variances of “partialled-out” dependent outcomes at either side of the threshold.

For instance, :̂ρ+,Full can be intuitively described as

:̂ρ+,Full ≈
yCov(XdY⊥(Zd−Z̄)

d ,Xd [Ud −Ū ]⊥(Zd−Z̄)|∆d = 0)
xVar(Xd [Ud −Ū ]⊥(Zd−Z̄)|∆d = 0)

where Y⊥(Zd−Z̄)
d and [Ud −Ū ]⊥(Zd−Z̄) represent variables Yd and Ud −Ū after removing the components

linearly explained by Zd − Z̄. Similar representations are possible for :̂ρ−,Full, :̂τUd−Ū ,+ and :̂τUd−Ū ,−.

In essence, deriving an explicit “omitted variable bias” formula for yBias is useful because it allows us to

identify which types of unobserved confounders will likely cause the most bias. The previous results suggest

that the degree to which the omission of a confounder can distort results is determined by two affinities: i)

how much does the unobserved confounder differential Ud −Ū correlate with the politician’s type Xd (these

come from the :̂τUd−Ū ,±); and ii), how strongly Ud −Ū is associated to the outcome Yd (these result from the
:̂ρ±,Full). More precisely, these associations are described by four quantities15:

• R+
Xd∼Ud−Ū |Zd−Z̄ := The estimated residual correlation between Xd and Ud(1)−Ū after controlling for

observed covariates Zd(1)− Z̄, when ∆d = 0.

• R+
Yd∼Ud−Ū |Xd ,Zd−Z̄ := The estimated residual correlation between Yd and Ud(1)−Ū after controlling for

observed covariates Zd(1)− Z̄ and Xd , when ∆d = 0.

• R−
Xd∼Ud−Ū |Zd−Z̄ := The estimated residual correlation between Xd and Ud(0)−Ū after controlling for

observed covariates Zd(0)− Z̄, when ∆d = 0.

15For precise mathematical definitions, please refer to the Appendix B.11.
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• R−
Yd∼Ud−Ū |Xd ,Zd−Z̄ := The estimated residual correlation between Yd and Ud(0)−Ū after controlling for

observed covariates Zd(0)− Z̄ and Xd , when ∆d = 0.

In Appendix B.11, I show that these quantities completely characterize the bias to the extent that

yBias = Ĉ+×

¨

˝

R+
Xd∼Ud−Ū |Zd−Z̄ ×R+

Yd∼Ud−Ū |Xd ,Zd−Z̄
b

1− [R+
Xd∼Ud−Ū |Zd−Z̄]

2

˛

‚+ Ĉ−×

¨

˝

R−
Xd∼Ud−Ū |Zd−Z̄ ×R−

Yd∼Ud−Ū |Xd ,Zd−Z̄
b

1− [R−
Xd∼Ud−Ū |Zd−Z̄]

2

˛

‚

where Ĉ+ and Ĉ− are constants that can be estimated using only information from the restricted model16.

Consequently, the complete incidence of unobserved confounders in the estimated effect is summarized by

two quantities, known as “Bias Factors”, which are embodied in the model as

BF+ =
R+

Xd∼Ud−Ū |Zd−Z̄ ×R+
Yd∼Ud−Ū |Xd ,Zd−Z̄

b

1− [R+
Xd∼Ud−Ū |Zd−Z̄]

2
; BF− =

R−
Xd∼Ud−Ū |Zd−Z̄ ×R−

Yd∼Ud−Ū |Xd ,Zd−Z̄
b

1− [R−
Xd∼Ud−Ū |Zd−Z̄]

2

Following these results, measuring the amount of bias induced by a specific confounder’s omission is

equivalent to determining its two bias factors. Moreover, these quantities hold an intuitive interpretation:

they are an aggregate measure of how relevant differences in the omitted characteristic are, rather than Xd ,

at determining outcome levels at the right (BF+) or at the left (BF−) of the threshold. Finally, notice that

these quantities intuitively combine the correlation strength between the unobservable and the trait (i.e., the

imbalance part) and the correlation strength between the unobservable and the outcome (i.e., the impact

part) to account simultaneously for both sources of bias.

Likewise, the omitted attribute bias can be seen as a function of these two variables, i.e., yBias =

yBias(BF+,BF−). This formulation admits a convenient graphical depiction of the bias, known as sensi-

tivity contour plots (Cinelli & Hazlett, 2020a). Essentially, these diagrams leverage the fact that each pair

of hypothetical bias factors (BF+,BF−) corresponds to a particular level of bias. Hence, given an initial,

albeit incorrect, estimate of the causal effect :̂τY,Res, it is possible to reproduce the estimate that we would

have obtained using the complete model via the equation :̂τY,Full = :̂τY,Res + yBias(BF+,BF−). Thereby, us-

ing a contour plot17, it is possible to illustrate the particular values of :̂τY,Full associated to each point in

the BF+−BF− plane. In particular, it is possible to determine the set of points for which :̂τY,Full = 0 or for

which the estimated sign flips, which reflect circumstances in which unobservable confounding dramatically

modifies the study conclusions. An illustration of this is available in Figure 2.

16These constants result from transforming sample covariances into sample correlations and from manipulating partial correla-
tions.

17A contour plot, or level plot, is a graphical technique for representing a 3-dimensional surface z = φ(x,y) in 2-dimensional
space by plotting constant z slices over the x− y plane. In other words, it shows the set of points (x,y) that yield the same value of
z = φ(x,y), for several z in the range of φ .
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FIGURE 2: An example contour plot illustrating bias factor incidence on an observed estimate.

Notes: Hypothetical bias contour plot for positive Ĉ+ and Ĉ−. The X−axis reflect values of BF+, while the Y−axis values

of BF−. Green lines represent level curves of the function yBias(BF+,BF−). Every point in the plane represents the estimate

of the “Full” model corresponding to a tuple of bias factors. For instance, I indicate the value of the “Full” model when

bias factors are some arbitrary pair (a,b). When there is no bias due to unobservables—represented by the point (0,0)—the

estimate resulting from the “Full” model (:̂τY,Full) matches that observed in the “Restricted” model (:̂τY,Res).
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4.2 Can we assess whether a problematic omitted confounder exists in a particular study?

While it is possible to quantify exactly how influential an unobserved trait must be for the results to be

discredited, assessing whether such a confounder might exist in one’s study remains a challenge. This is

because assessing the maximum strength of confounders typically involves some subjective assertion, in-

formal benchmark, or “back of the envelope” calculation. Therefore, many popular sensitivity analysis

frameworks, such as Imbens (2003) and Oster (2019), suggest that the best way to assess the influence of

omitted confounders is by benchmarking its possible strength using other observed covariates. In essence,

the rationale for the method is that even if a researcher cannot directly assess the influence of an unobserved

confounder on the bias, he or she may still be able to assess its relative strength, for example, by claiming

that the omitted characteristic cannot possibly account for as much variation as some other observed trait.

For instance, let Zidl be the benchmark characteristic18 and denote by

Z−l
id = (Zid,1, · · · ,Zid,l−1,Zid,l+1, · · · ,Zid,m)

′

the observed trait vector excluding attribute Zidl . Now let

κ
+
X :=

¨

˝

R+
Xd∼Ud−Ū |Z−l

d −Z̄−l

R+
Xd∼Zdl−Z̄l |Z−l

d −Z̄−l

˛

‚

2

; κ
+
Y :=

¨

˝

R+
Yd∼Ud−Ū |Xd ,Z−l

d −Z̄−l

R+
Yd∼Zdl−Z̄l |Xd ,Z−l

d −Z̄−l

˛

‚

2

In words, κ
+
X represents how much more of the variance of Xd does Ud − Ū explain relative to the

benchmark difference Zdl − Z̄l (after controlling for the remaining characteristics)19. κ
+
Y has a similar inter-

pretation but instead highlights the share of the variance of the outcome variable Yd at the right of the cutoff

is explained by Ud −Ū with Zdl − Z̄l , after controlling for the other observed traits. Alternatively, κ
+
X and

κ
+
Y account for how much more is Ud −Ū a better predictor of Xd and XdYd than Zdl − Z̄l , respectively.

Likewise, it is possible to define analogous quantities for the left side of the threshold as

κ
−
X :=

¨

˝

R−
Xd∼Ud−Ū |Z−l

d −Z̄−l

R−
Xd∼Zdl−Z̄l |Z−l

d −Z̄−l

˛

‚

2

; κ
−
Y :=

¨

˝

R−
Yd∼Ud−Ū |Xd ,Z−l

d −Z̄−l

R−
Yd∼Zdl−Z̄l |Xd ,Z−l

d −Z̄−l

˛

‚

2

Without loss of generality, consider Ud to be the part of Ud not linearly explained by Zd (so that Ud

and Zd are uncorrelated). Following this characterization, I show in Appendix B.12 that bounding the

18A possible choice of this trait can be based on the bias decompositions of Section 3. For instance, one could choose the most
influential attribute as the benchmark.

19This assertion follows from the same logic of R−squared statistics in linear regressions. Given a linear regression model
Yi = β0 +β1Di + εi, let Ŷi and ε̂i be the model’s predicted outcome and residuals respectively. Then

R2
Y∼D =

Var(Ŷi)

Var(Yi)

Share of the variance of Yi
explained by Di.

= 1− Var(ε̂i)

Var(Yi)
= Corr(Ŷi,Yi)

2 = Corr(Yi,Di)
2

Square of the correlation between the
dependent and the independent variables.

When additional controls exist, substitute Yi and Di with their “partialed-out” versions.
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bias factors in terms of these quantities is possible. More precisely, there exist functions BF+
(κX ,κY ) and

BF−
(κX ,κY ) such that

|BF+|≤ BF+
(κ+

X ,κ+
Y ); |BF−|≤ BF−

(κ−
X ,κ−

Y )

Furthermore, these constraints are tight, meaning they are the smallest possible upper bounds for these

numbers. Finally, apart from redirecting the focus from absolute to relative terms, this approach also makes

it possible to use the available data to infer the maximum conceivable strength of any potential confounders.

For instance, if we estimated that [R+
Xd∼Zdl−Z̄l |Z−l

d −Z̄−l ]
2 > 0.5, this is, the differential of the benchmark at-

tribute explained more than half of the residual variation of Xd just at the right of the threshold, then no other

characteristic could possibly be as strong as this characteristic in this dimension. As a result, data would

disclose that the only admissible values for κ
+
X would be those between 0 and 1.

Following this result, it is also possible to cap the aggregate residual bias to the extent that

|yBias(h)|≤ |Ĉ+| BF+
(κ+

X ,κ+
Y )+ |Ĉ−| BF−

(κ−
X ,κ−

Y ) = Bias(κ+
X ,κ+

Y ,κ−
X ,κ−

Y )

Yet, even when it is possible to reason separately about each component of (κ+
X ,κ+

Y ,κ−
X ,κ−

Y ), Cinelli and

Hazlett (2020a) propose the clearest analysis results from assuming that κ
+
X = κ

+
Y = κ

−
X = κ

−
Y = κ . Doing

so reduces the problem to determining how much point estimates could change if the unobserved confounder

was at most κ times as strong as the benchmark characteristic. Therefore, bounds for the desired effect can

be constructed using the fact that

Yet, even when it is possible to reason separately about each component of (κ+
X ,κ+

Y ,κ−
X ,κ−

Y ), the clearest

analysis results from assuming that κ
+
X = κ

+
Y = κ

−
X = κ

−
Y = κ . Doing so reduces the problem to determining

how much point estimates could change if the unobserved confounder was at most κ times as strong as the

benchmark characteristic. Therefore, bounds for the desired effect can be constructed using the fact that

:̂τY,Res −Bias(κ,κ,κ,κ)≤ :̂τY,Full ≈ τPCRD ≤ :̂τY,Res +Bias(κ,κ,κ,κ)

In Appendix B.13, I demonstrate how the single unobserved confounder framework used in this section

is general enough to cover the case of multiple omitted confounders. Furthermore, I extend the bound-

ing methodology to allow for benchmarks that include multiple or all observed characteristics. Finally, in

Appendix C.1, I explain how this procedure produces valid bounds for effect, regardless of the nature of

(κ+
X ,κ+

Y ,κ−
X ,κ−

Y ).

A potential complication for adopting this analysis is that, whereas bias depends on the relative strength

between unobservables and the selected benchmark in a close election, practitioners may only have a sense

of this at the population level. Because conditioning on tight elections can amplify disparities between politi-

cians on unobservable dimensions—thereby increasing relative strength from that known in aggregate—

these two numbers can dramatically fluctuate due to post-treatment bias. This poses problems for interpre-

tation, as using the population’s relative strength as a reference may underestimate the possible magnitude
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of the bias. Moreover, holding fixed other variables can further exacerbate the post-treatment bias effect

in the unobserved dimension. However, as shown in Appendix C.2 relative strengths are not guaranteed to

be inflated by conditioning; they can also be deflated depending on the choice of benchmarking category.

These concerns can be alleviated by selecting benchmark variables that are also significantly influenced

by conditioning. The intuition behind this result is that relative strength is a ratio. Thus, even when the

numerator (the unobservable) is likely to increase due to post-treatment bias, choosing a denominator (the

benchmark) that is also heavily influenced by conditioning can help balance out the effect, bringing the ratio

closer to the population benchmark.

5 From theory to practice: performance of female mayors in the pandemic.

This section demonstrates the proposed econometric framework through a case study. Specifically, it revis-

its the article “Under pressure: Women’s leadership during the COVID-19 crisis” by Bruce et al. (2022),

published in the Journal of Development Economics. Specifically, I constructed a database using the raw

sources listed by the authors and included additional politician characteristics from the Tribunal Superior

Eleitoral, Brazil’s Electoral authority. Reassuringly, my analysis using this dataset yielded the same quali-

tative results as the original paper.

This paper examines the impact of female mayors during the COVID-19 pandemic in Brazil. The au-

thors’ identification strategy is a PCRD design, leveraging close mayoral races between male and female

candidates in 2016 as a potential source of quasi-random variation. Next, they investigate whether places

with female leadership had lower rates of deaths and hospitalizations due to COVID-19 and other Severe

Acute Respiratory Infections (SARI) than places with male leadership. The data used for estimation comes

from a variety of sources including the SIVEP-Gripe system, Brazil’s Electoral Court, and the data from

Power and Rodrigues-Silveira (2019).

As discussed in this paper, this particular PCRD will likely confound the effect of compensating differ-

entials and the effect attributable to gender. This observation becomes clearer when comparing the individ-

ual traits of candidates of different genders involved in close races. Figure 3 suggests that narrow female

winners are more likely to be college-educated, are slightly younger, more right-wing oriented, and more

likely to belong to the presidential coalition in 2016 than their male counterparts. Despite the presence and

awareness of potential confounders, Bruce et al. (2022) still claim that “female leadership reduced deaths

and hospitalizations per 100 thousand inhabitants. (p.1)”.

Yet, to what extent can we be confident that differences in epidemiological outcomes are driven by gen-

der, as claimed by the authors, rather than other characteristics of candidates in close races? A first step

towards answering this question is correcting for potential bias due to unbalanced observable traits. Bruce

et al. (2022) attempt this by using the estimator proposed by Calonico et al. (2019a) and conclude that their

results are not due to “other observable mayoral characteristics such as education or political preferences

29



FIGURE 3: Compensating differentials in Bruce et al. (2022)
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most voted women and the most voted men in the contest. Bins were selected following the mimicking variance evenly-spaced

method developed by Calonico et al. (2015) using spacings estimators. Local linear polynomial estimates and robust standard

errors (in parenthesis) are reported following Calonico et al. (2014) using a triangular kernel and an MSE-optimal bandwidth.

The ideology score in the lower center panel is measured from [−1,1], where a positive score indicates a right-wing position,

whereas negative values represent left-wing political beliefs.
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(p.1).”. However, as shown in Section 3.1, this assertion overlooks that the local model used in Calonico

et al. (2019a) would only be effective at correcting the bias for some specific regression functions. This is

because the employed local model does not allow enough flexibility to be a complete non-parametric esti-

mator of the local average treatment effect in the presence of compensating differentials.

Table 1 shows the covariate-adjusted estimators following the bias correction procedure proposed in

Section 3.2. Notably, the original estimates (Panel A) and the politician-attribute corrected estimates (Panel

B) are relatively similar in size and still statistically significant at the 0.05 level for all the epidemiological

outcomes. Panel C emphasizes this observation, given that the independent estimate of the PCRD bias is

small and not statistically significant at the reference level. Thus, no sizeable bias appears to arise from

observable traits despite the significant differentials in some traits exhibited in Figure 3.

To further investigate the consequences of observable compensating differentials on the estimate, I con-

duct the decompositions introduced in Section 3.3 for COVID-19 deaths (Column 1 of Table 1). Figure 4

summarizes these results. While the estimated bias is close to zero and non-significant, as suggested in Table

1, the decompositions reveal that their components are not. On the one hand, the fact that narrow female

winners are more ideologically right-wing oriented than males produces a sizeable (12.5% the size of the

uncorrected coefficient) and statistically significant bias at the 0.05% level. However, the sign of the bias

suggests that not accounting for ideological differences would underestimate the role of gender leadership,

meaning that places where right-wing-leaning politicians were elected fared better on average than places

with candidates on the opposite side of the political spectrum20. Moreover, the “mixed” decomposition re-

veals that the bias is due to differences in ideological positions rather than right/left-wing males influencing

outcomes differently than right/left-wing female politicians.

On the other hand, other characteristics that exhibited differentials, such as education and belonging to

the presidential coalition, indicate that the effect attributed to gender may be overestimated. For instance,

considering that females involved in close elections are better educated would decrease the estimated effect

of the uncorrected coefficient by 10%. However, this reduction is statistically non-significant. Additionally,

the “mixed” decomposition reveals that while differences in education endowments explain a bigger share

of the effect (15%), educated men seem to outperform women of similar education levels, making the ag-

gregate bias smaller. Similar results hold when considering membership in the government coalition, whose

incidence in the effect is positive and statistically significant at the 0.1 level. Thus, it is not that observed

differentials do not alter results, but rather that the biases they generate cancel out. This demonstrates a

major advantage of the method: it not only establishes whether the bias is zero in a particular application

but also explains why, thus delivering meaningful implications even under zero bias.

20It is important to note that the decompositions of the bias cannot be interpreted causally. The results indicate that better
epidemiological indicators were observed in places where right-wing politicians won. However, this does not mean that ideology
accounts for the positive results observed in these places. These quantities are merely correlations, and any policy implications
should be gauged accordingly.
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TABLE 1: Traditional vs. covariate-adjusted estimators.

(1) (2) (3) (4)
COVID-19 deaths COVID-19 hosp. SARI deaths SARI hosp.

per 100k pop. per 100k pop. per 100k pop. per 100k pop.

Panel A: Original estimates

Female wins [1=Yes] -16.224 -52.732 -22.648 -87.515
(6.287) (20.617) (8.144) (32.648)

[-30.97,-6.32 ] [-100.64,-19.82] [-41.75,-9.82] [-161.77,-33.79]

Bandwidth size 0.161 0.148 0.151 0.147
Observations 1238 1238 1238 1238
Observations in Bandwidth 780 731 740 723

Panel B: Politician-attribute corrected estimate.

Female wins [1=Yes] -16.809 -54.729 -23.236 -92.307
(6.337) (20.433) (8.079) (30.132)

[-31.12,-6.28 ] [-100.02,-19.93] [-41.34,-9.67] [-161.65,-43.53]

Bandwidth size 0.144 0.148 0.141 0.146
Observations 1238 1238 1238 1238
Observations in Bandwidth 709 732 690 722

Panel C: Estimated bias on observables.

Female wins [1=Yes] -0.248 -1.289 -0.737 -3.757
(1.667) (4.775) (2.255) (7.596)

[-3.52, 3.02 ] [-10.65, 8.07] [-5.16, 3.68] [-18.64,11.13]

Bandwidth size 0.144 0.148 0.141 0.146
Observations 1238 1238 1238 1238
Observations in Bandwidth 709 732 690 722

Notes: This table presents estimates for the impact of female victory on COVID-19 and SARI deaths and hospitalizations. Panel

A shows Calonico et al. (2014) estimates under a linear model, triangular kernel, and MSE-optimal bandwidth choice. Panel B

contains covariate corrections for differences in age, incumbency, marriage status, ideology, being a health professional, national

government coalition membership, and college education. Panel C is the estimated difference between Panel A and Panel B.

Robust standard errors in parenthesis and 95% confidence intervals in squared brackets. All specifications include state fixed

effects.
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FIGURE 4: Bias decomposition COVID-19 deaths per hundred-thousand people.

Notes: The dark blue coefficient shows the estimated bias on observables. Rows 2-7 show how individual traits contribute

to this bias. Pink estimates show each trait’s aggregate contribution to the bias. Green and brown estimates further break

down this quantity (pink estimate) into the part attributable to endowment differences and the part ascribable to differences

in the impact on the outcome of said characteristic, respectively. All point estimates include state-level fixed effects and are

recentered. 95% confidence intervals.

Even when the analysis of observed differentials seems to support that gender differences drive the esti-

mated effect, lurking in the background is the possibility of an unobserved confounder explaining the effect.

To assess this prospect, I will use the results derived in Section 4 to test the possible effects that unobserved

confounders using two formal benchmarks: ideology, which is the most influential observed confounder

according to the decomposition, and also, the whole set of observed traits combined.

Figure 5 shows the contour plot of the estimated coefficients resulting from different bias factors com-

binations as proposed in Section 4. More precisely, it displays level curves for different estimate values and

the combinations of bias factors that would result in zero estimated coefficients (highlighted in dark blue).

I also plotted the maximum admissible coefficient estimates that would result from omitting a confounder

that is k times as strong as the benchmarks. For instance, an unobserved confounder 2.5 times stronger than

ideology, generating a positive bias, would not nullify the result (at most, it would result in an estimated

effect of −5.39). However, a confounder three times stronger than ideology could result in a positive es-

timate, thus invalidating the authors’ conclusions. Likewise, a confounder 1.5 stronger than all observed
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confounders could not disprove the authors’ conclusions, but one two times stronger has the potential to do

so.

FIGURE 5: Sensitivity to unobservables: contour plot with formal benchmarks.

Notes: This graph shows a contour graph for the estimated effect of the estimated effect that would be retrieved if an unobserved

confounder with bias factors (BF+,BF−) was observed and corrected for. Each line represents a different level curve for the

point estimates. The dark blue line indicates the combinations of bias factors that would lead the estimated effect to be zero.

Blue triangles show the bias factors and corrected point estimates of a confounder k−times as strong as ideology. Green

diamonds do the same for confounder k−times as strong as all observed politician traits.

A finer-grained analysis is provided in Figure 6, where I plot the implied bounds in the estimated effect

for different levels of k, using both benchmarks. For instance, any unobserved confounder less than 2.9

times as strong as ideology would lead to the estimated effect remaining negative. Similarly, any omitted

characteristic less than 1.6 times as strong as all the observed variables would have the same result.

I interpret these findings as evidence of the authors’ claim being relatively robust to unobserved con-

founding. On the one hand, ideology is the most influential of all observed confounders, surpassing other

traits spotlighted in the literature to be important for public policy, such as age (Alesina, Cassidy, &

Troiano, 2019), education (Besley, Montalvo, & Reynal-Querol, 2011) and political experience (Jones,

Saiegh, Spiller, & Tommasi, 2002). Thus, it seems unlikely a confounder almost thrice as strong as ideology

exists, provided most of the potential suspects are already included in the model.
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FIGURE 6: Point-estimate bounds using formal benchmarks for various values of k.

Notes: Point estimate bounds for different values of k, using as formal benchmarks ideology and all observed traits.

On the other hand, other sensitivity methodologies like Oster (2019) and Altonji et al. (2005) suggest

that an estimate is robust to unobservables if an omitted confounder as strong as the complete set of con-
trols cannot drastically change the article’s conclusions. Hence, according to this criterion, these results

would be relatively robust to omitted variables.

However, assessing the sensitivity of estimates to unobservables should always be gauged in context.

For instance, the rationale behind the previous empirical rule is that researchers typically focus their data

collection efforts (or their choice of regression controls) on the variable they believe ex-ante are the most

important to adjust for. Consequently, it is unlikely a confounder as strong as all the variables that were

intendedly included in the model due to their confounding potential can exist. Yet, this criterion can be

misleading whenever there is limited information on politicians’ characteristics, insofar as many important

characteristics could have been left out due to lack of information. Thus, evaluating sensibility based on a

single strong benchmark and expert knowledge seems like a better strategy in these situations.
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6 Closing remarks

Politician characteristic regression discontinuity designs are a popular strategy for evaluating the role of

politician characteristics on an outcome of interest. Yet, as shown by Marshall (2022), the ability to retrieve

causal effects from this methodology requires invoking unverifiable and likely unsuitable assumptions. Es-

sentially, the problem rests in the fact that methodology does not compare winners to losers (say, outcomes

for the politician who wins the election relative to outcomes of his runner-up), but winners of different

types (a district managed by a politician with the outcome of interest who narrowly wins relative to one

where a candidate without the trait narrowly wins). As a result, differences in other individual traits closely

correlated to the trait of interest may confound the effect. More importantly, some of these differences

will naturally emerge to keep elections close between opposing candidates. Thus, whenever possible, a re-

searcher wishing to apply this methodology should attempt to describe the extent to which these potential

sources of bias can alter the results.

This paper develops an econometric framework for addressing estimation bias in PCRD designs. First,

I provide a covariate-adjusted local polynomial estimator that removes bias when all relevant confounders

are observed. I then leverage the structure of this estimator to describe its asymptotic properties and to de-

velop several decompositions of the bias. Furthermore, I argue that these decompositions are economically

meaningful and can be used to understand other potential sources of bias.

In addition, I develop a procedure to evaluate the sensitivity of the results to unobserved confounders.

To do so, I build on the work of Cinelli and Hazlett (2020a) to create bounds on the estimator that would

result from controlling for the omitted characteristic. This procedure allows a researcher to assess the extent

to which any unobserved characteristic could change their results. Moreover, by using other observed traits

as benchmarks, the method allows the investigator to judge whether a confounder that can drastically change

conclusions exists.

I apply all of these tools to a real-world example examining the impact of female leadership during the

COVID-19 pandemic in Brazil (Bruce et al., 2022). This particular PCRD design exhibits multiple potential

confounding factors, making it imperative to assess the potential size of the PCRD bias to draw any causal

claims from the study. While observed unbalanced characteristics lead to biases, I show these are negligible

on the aggregate due to emerging biases canceling each other out. Thus, I can conclude that observed differ-

entials do not alter the qualitative effect found by the authors, reinforcing the claim of a positive effect due

to female leadership. I also extend this analysis to account for the possibility of relevant omitted differen-

tials explaining the results. Using the developed methods, I can show that unobserved confounding would

need to be substantially large to overturn the main results, providing further reassurance on the existence of

an effect driven solely by gender. This application exemplifies how the tools I developed can be useful in

building credibility for any study leveraging a PCRD design to retrieve causal implications.

However, it is worth stressing that PCRD designs, like observational studies, do not provide the ideal
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environment for estimating causal effects. While the proposed methods provide a way to assess the confi-

dence in making causality claims based on these studies, they do not surpass or substitute an appropriate

identification strategy. The extent to which these methods are informative should always be gauged in light

of the data quality used for covariate adjustment and bias benchmarking.
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A Appendix - Monte Carlo Simulation

In this section, I evaluate the performance of the proposed estimator τ̂BC
PCRD with respect to the traditional

τ̂PCRD estimator. To do this, I recreate a similar situation to Marshall (2022, p.9), describing a typical data

generation process leading to a PCRD bias.

Consider candidates i and j running in the same district d. Each of the politicians is either type Xid = 1

or Xid = 0, with Xid ∼ Bernoulli(0.5). Moreover, these candidates have two potential compensating differ-

entials Zid = (Zid1,Zid2). The distribution of these traits depends on the type of politician and one another,

thus exhibiting mutual correlation and leading to a PCRD estimation bias. In particular:

Zid1 ∼

exp(1) if Xid = 0,

exp(2) if Xid = 1

and

Zid2 ∼

Binomial(5,0.5) if Zid1 > 1,

Binomial(3,0.4) if Zid1 ≤ 1

Moreover, the votes obtained by each candidate are a function of his attributes. More precisely,

Vid = α

ˆ

Xid −X jd

2

˙

+β1

ˆ

Zid1 −Z jd1

2

˙

+β2

ˆ

Zid2 −Z jd2

2

˙

+

ˆ

ξid −ξ jd

2

˙

where α = 0.3, β1 = 5, β2 = 7 and ξid ∼N (0,0.1). Hence,

∆d = α +β1 pZ1d1 −Z0d1q+β2 pZ1d2 −Z0d2q+ pξ1d −ξ0dq

Moreover, the data generation process is non-linear and includes interaction between these characteris-

tics:

Yid(1) = 1 ·Xid +5log(1+Zid1)∗Zid2 +Z2
id2 + εd

where εd ∼N (0,0.3) is an i.i.d district-level shock. Following this model, the value to be estimated is

τPCRD = 1.

1



FIGURE A-1: Monte Carlo simulation to test the consistency of the bias-corrected estimator.
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– As it can be observed in Figure A-1, while τ̂BC
PCRD accurately estimates the correct value, τ̂PCRD is

consistently overestimating the effect. This is because the existence of unbalanced characteristics in close

elections causes the PCRD estimation bias. Furthermore, not only does the PCRD consistently estimate the

effect, but its variance is significantly lower than that of the traditional estimator. Hence, the proposed esti-

mator greatly improves the precision with which τPCRD is estimated. A similar exercise portrayed in Figure

A-2, is consistent with the estimator’s theoretical asymptotic normality and variance reduction properties (

since in this case :̂γ+− :̂γ−
P−→ 0).
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FIGURE A-2: Monte Carlo simulation to test asymptotic normality.
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B Appendix - Technical Information and Ommited Proofs

B.1 Basic notation

A rigorous treatment of the results presented in the paper demands dealing with the theory of local polyno-

mial estimators. In this section, I will briefly list the basic expressions that will be required for accurately

enunciating assumptions and proving relevant results. In most cases, I borrow the notation from Calonico et

al. (2019a).

Given the notation introduced in the text, define the following vectors and matrices:

Y = rY1, · · · ,Yns
′ , ∆ = r∆1, · · · ,∆ns

′ ,

Z = rZ1, · · · ,Zns
′ , Zd = rZd1,Zd2, · · · ,Zdms

′ , d = 1,2, · · · ,n,
Y(0) = rY1(0), · · · ,Yn(0)s

′ , Y(1) = rY1(1), · · · ,Yn(1)s
′ ,

Z(0) = rZ1(0), · · · ,Zn(0)s
′ , Z(1) = rZ1(1), · · · ,Zn(1)s

′ ,

µY−(∆) = E[Y(0) | ∆], µY+(∆) = E[Y(1) | ∆],

ΣY− = V[Y(0) | ∆], ΣY+ = V[Y(1) | ∆],

µZ−(∆) = E[vec(Z(0)) | ∆], µZ+(∆) = E[vec(Z(1)) | ∆].

ΣZ− = V[vec(Z(0)) | ∆], ΣZ+ = V[vec(Z(1)) | ∆].

Recall from the text that:

µY−(u) = E rYd(0) | ∆d = us , µY+(u) = E rYd(1) | ∆d = us ,

σ2
Y−(u) = V rYd(0) | ∆d = us , σ2

Y+(u) = V rYd(1) | ∆d = us ,

µZ−(u) = E rZd(0) | ∆d = us , µZ+(u) = E rZd(1) | ∆d = us ,

σ2
Z−(u) = V rZd(0) | ∆d = us , σ2

Z+(u) = V rZd(1) | ∆d = us ,

where

µZℓ−
(u) = E rZdℓ(0) | ∆d = us , µZℓ+(u) = E rZdℓ(1) | ∆d = us ,

for ℓ= 1,2, · · · ,m.

Additionally, handling the joint distribution of the outcome variable and the additional covariates be-

comes necessary whenever estimation involves covariates. Thus, consider the following:

Sd =
“

Yd ,Z′
d

‰′
, Sd(0) = rYd(0),Zd(0)′s

′ , Sd(1) = rYd(1),Zd(1)′s
′ ,

S = [Y,Z], S(0) = [Y(0),Z(0)], S(1) = [Y(1),Z(1)],
µS−(∆) = E[vec(S(0)) | ∆], µS+(∆) = E[vec(S(1)) | ∆],

ΣS− = V[vec(S(0)) | ∆], ΣS+ = V[vec(S(1)) | ∆],

µS−(u) = E rSd(0) | ∆d = us , µS+(u) = E rSd(1) | ∆d = us ,

σ2
S−(u) = V rSd(0) | ∆d = us , σ2

S+(u) = V rSd(1) | ∆d = us .
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Moreover, consider the shorthand notation

Γ−,p(h) = Rp(h)′K−(h)Rp(h)/n, ϒY−,p(h) = Rp(h)′K−(h)Y/n

Γ+,p(h) = Rp(h)′K+(h)Rp(h)/n, ϒY+,p(h) = Rp(h)′K+(h)Y/n

where

Rp(h) =
„

rp

ˆ

∆1

h

˙

,rp

ˆ

∆2

h

˙

, · · · ,rp

ˆ

∆n

h

˙ȷ′

n×(1+p)
,

Hp(h) = diag
`

h j : j = 0,1, · · · , p
˘

=

»

—

—

—

—

–

1 0 · · · 0

0 h · · · 0
...

...
. . .

...

0 0 · · · hp

fi

ffi

ffi

ffi

ffi

fl

(1+p)×(1+p)

K−(h) = diagp1p∆d < 0qkh p−∆dq : d = 1,2, · · · ,nq ,

K+(h) = diagp1p∆d ≥ 0qkh p∆dq : d = 1,2, · · · ,nq .

and rp(x) = p1,x, · · · ,xpq
′, kh(u) = K(u/h)/h, with K(·) a fixed kernel function, together with h a posi-

tive bandwidth sequence.

Finally, to simplify notation, set

P−,p(h) =
?

hΓ
−1
−,p(h)Rp(h)′K−(h)/

?
n,

P+,p(h) =
?

hΓ
−1
+,p(h)Rp(h)′K+(h)/

?
n,

and, with a slight abuse of notation vk = (vk
1,v

k
2, · · · ,vk

n)
′ for v ∈ Rn,

ϑ−,p(h) = Rp(h)′K−(h)(∆/n)1+p/n,

ϑ+,p(h) = Rp(h)′K−(h)(∆/n)1+p/n

B.2 Regularity assumptions

Local polynomial estimators require continuity or smoothness assumptions to ensure desirable properties

such as consistency and asymptotic normality. For this paper, I use the standard conditions presented by

Calonico et al. (2019b).

Assumption RA-1 (Kernel). For some ζ > 0, the kernel function K : [0,ζ ] → R is bounded and non-

negative, zero outside its support, and positive and continuous on (0,ζ ).

Assumption RA-1 limits the number of valid kernels that can be used to localize the effect around the

cutoff. Popular kernels, such as the triangular, uniform, and Epanechnikov’s, are allowed.

Assumption RA-2 (RD standard). For some ζ0 > 0, the following hold in some neighborhood of 0 for all

u ∈ (−ζ0,ζ0) :
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a) The Lebesgue density of ∆d , denoted by f∆(u), is continuous and bounded away from zero.

b) E[|Yd(t)|4|∆d = u] are continuous for t ∈ {0,1}

c) µY−(u) and µY+(u) are ρ ≥ 1 times continuously differentiable.

d) σY−(u) and σY+(u) are continuous and bounded away from zero.

Assumption RA-2 describes the minimum regularity conditions needed to estimate the effects correctly.

Part (a) requires the running variable to be continuously distributed near the cutoff and guarantees the pres-

ence of observations arbitrarily close to the threshold in large samples. Part (b) imposes the existence of

fourth moments. Parts (c) and (d) are standard smoothness conditions on the underlying regression func-

tions and conditional variances. Assumption RA-3 requires analogous properties for the joint distribution of

the outcome variable and the covariates.

Assumption RA-3 (RD covariates). For some ζ0 > 0, the following hold in some neighborhood of 0 for all

u ∈ (−ζ0,ζ0) :

a) E rZd(0)Yd(0) | ∆d = us and E rZd(1)Yd(1) | ∆d = us are continuously differentiable.

b) µS−(u) and µS+(u) are ρ ≥ 1 times continuously differentiable.

c) σ2
S−(u) and σ2

S+(u) are continuous and invertible.

d) E
”

|Sd(t)|
4 | Xi = x

ı

, t ∈ {0,1}, are continuous.

where |·| denotes the Euclidean matrix norm, that is, |A|2= trace(A′A) for scalar, vector, or matrix A.

Additionally, non-parametric identification requires additional regularity assumptions. I collect some of

the conditions specified in Frölich and Huber (2019a) required for identification and estimation in the sharp

RD design.

Assumption RA-4 (Non-parametric identification regularity conditions). For a given η > 0, let U+
η = [0,η ]

and U−
η = [−η ,0] and Uη =U+

η ∪U−
η . Then

a) The cumulative distribution function of the running variable F∆(u) is differentiable at u= 0 and f∆(0)> 0.

b) The conditional cumulative distribution functions

lim
η→0

FZd |∆d∈U+
η
(z) and lim

η→0
FZd |∆d∈U−

η
(z)

exist.

c) There exist probability density/mass functions f+Zd(1)|∆d
(z|0) and f−Zd(0)|∆d

(z|0) linked to the random vectors

Zd(1)|∆d = 0 and Zd(0)|∆d = 0 respectively.
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d) There exists η0 > 0 such that regression functions

E[Yd(1)|Zd(1) = z,∆d = u] and E[Yd(0)|Zd(1) = z,∆d = u]

are bounded almost surely over Uη , for any η < η0.

Finally, I introduce regularity assumptions for the estimation in the general case.

Assumption RA-5 (Non-parametric estimation RD conditions). For a given η > 0, let U+
η = [0,η ] and

U−
η = [−η ,0] and Uη =U+

η ∪U−
η . Then

a) K̄(·) and K̃(·) are kernels of order λ ≥ 2, satisfying all conditions in Assumption RA-1.

b) m+(z,u) and m−(z,u) are λ times continuously differentable with respect to u at u = 0, with the λ−th

derivative Hölder continuous in a neighborhood of u = 0.

c) The probability density functions f+(Z(1),∆d)
(z,u) and f−(Z(0),∆d)

(z,u) are λ −1 times continuously differen-

tiable with respect to u at u = 0, with the (λ −1)−th derivative Hölder continuous in a neighborhood of

u = 0.

d) m+(z,u) and f+(Z(1),∆d)
(z,u) have two continuous right derivatives with respect to z at u = 0, with second

derivative Hölder continuous in a neighborhood of u = 0.

e) m−(z,u) and f−(Z(0),∆d)
(z,u) have two continuous left derivatives with respect to z at u = 0, with second

derivative Hölder continuous in a neighborhood of u = 0.

f) The bandwidths h,hz, h̄ → 0, nh → ∞, nh → ∞ and nhzhmc
x → ∞, with mc the number of continuous

covariates.

g) The left and right limits of the conditional variances

lim
η→0

E[(Y −m+(Zd ,∆d))
2|Zd ,∆d = u+η ] and lim

η→0
E[(Y −m−(Zd ,∆d))

2|Zd ,∆d = u−η ]

exist at u = 0.

B.3 Standard local polynomial estimators

In this section, I will explain briefly how local polynomial estimators work. For a given degree p, the

standard local model for the dependent variable Yd can be formulated as:

Ỹd = rp(∆d)β̃Y−,p +(Xd × rp(∆d))β̃Y+,p

Localization requires estimating the model in a neighborhood of the threshold. Thus, consider band-

widths sequences h = ph−,h+q used for restricting the sample at the left and right of the cutoff respectively,

and a weighting scheme Kh puq = 1(u < 0)kh− p−uq+1(u ≥ 0)kh+ puq.
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The target population parameters are the coefficients of the Taylor expansion of the conditional expec-

tation function around the threshold, namely:

βY−,p =

„

µY−(0),
1
1!

µ
(1)
Y−(0),

1
2!

µ
(2)
Y−(0) · · · ,

1
p!

µ
(p)
Y−(0)

ȷ′

(1+p)×1
,

βY+,p =

„

µY+(0),
1
1!

µ
(1)
Y+(0),

1
2!

µ
(2)
Y+(0) · · · ,

1
p!

µ
(p)
Y+(0)

ȷ′

(1+p)×1

where, for every ν = 0,1, · · ·,

µ
(ν)
Y−(u) =

∂ ν

∂uν
µY−(u) =

∂ ν

∂uν
E[Yd(0)|∆d = u], µ

(ν)
Y+(u) =

∂ ν

∂uν
µY+(u) =

∂ ν

∂uν
E[Yd(1)|∆d = u].

The local polynomial estimators result from solving a weighted least square problem:

ˆ̃
βY,p(h) =

« ˆ̃
βY−,p(h−)
ˆ̃
βY+,p(h+)

ff

(2+2p)

= argmin
b−,b+

n

∑
d=1

`

Yd − r−,p p∆dq
′ b−− r+,p p∆dq

′ b+

˘2 Kh p∆dq

where b− ∈ R1+p,b+ ∈ R1+p, and

r−,p(u) := 1(u < 0)rp(u), r+,p(u) := 1(u ≥ 0)rp(u).

To express the problem in matrix form, consider the following auxiliary matrices:

R̃−,p(h) =
„

1(∆1 < 0)rp

ˆ

∆1

h

˙

, · · · ,1(∆n < 0)rp

ˆ

∆n

h

˙ȷ′

n×(p+1)

R̃+,p(h) =
„

1(∆1 ≥ 0)rp

ˆ

∆1

h

˙

, · · · ,1(∆n ≥ 0)rp

ˆ

∆n

h

˙ȷ′

n×(p+1)

R̃p(h) =
´

R̃−,p(h−)H−1
p (h−) R̃+,p(h+)H−1

p (h+)
¯

n×2(p+1)

W(h) = pK−(h−)+K+(h+)qn×n

It follows then that

ˆ̃
βY,p(h) = argmin

b
(Y− R̃p(h)b)′W(h)(Y− R̃p(h)b)

where b = (b− b+)
′ ∈ R2+2p.

Attempting to solve this problem leads to the first-order condition

ˆ̃
βY,p(h) = (R̃p(h)′W(h)R̃p(h))−1R̃p(h)′W(h)Y
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which results in

˜ ˆ̃
βY−,p(h−)
ˆ̃
βY+,p(h+)

¸

=

˜

([Rp(h−)H−1
p (h−)]′K−(h−)Rp(h−)H−1

p (h−))−1[Rp(h−)H−1
p (h−)]′K−(h−)Y

([Rp(h+)H−1
p (h+)]′K+(h+)Rp(h+)H−1

p (h+))−1[Rp(h+)H−1
p (h+)]′K+(h+)Y

¸

Simplifying these expressions and denoting results using the shorthand notation yields that

ˆ̃
βY−,p(h−) =

1
?

nh−
H−1

p (h−)P−,p(h−)Y, ˆ̃
βY+,p(h+) =

1
?

nh+
H−1

p (h+)P+,p(h+)Y

Finally, under Assumptions RA-1, RA-2 and bandwidths sequences such that

nmin{h−,h+}→ ∞, max{h−,h+}→ 0

Then

ˆ̃
βY−,p(h−)

P−→ βY−,p; ˆ̃
βY+,p(h+)

P−→ βY+,p

Which means that

τ̂Y,ν(h) = ν!e′ν
ˆ̃
βY+,p(h)−ν!e′ν

ˆ̃
βY−,p(h)

P−→ ν!e′νβY+,p −ν!e′νβY−,p

= µ
(ν)
Y+(0)−µ

(ν)
Y−(0)

where eν is the conformable (ν +1)-th unit vector. Hence

τ̂Y,0
P−→ µY+(0)−µY−(0)

B.4 Proof of Theorem 1

Proof. Calonico et al. (2019b) mention this result on page 39 without formal proof. I choose, however, to

demonstrate this result because it is significant to my paper. Consider the modified covariate vector:

9Z′
d = (Xd ×Zd1, · · · ,Xd ×Zdm,(1−Xd)×Zd1, · · · ,(1−Xd)×Zdm)

′ ∈ R2m

The covariate-adjusted RD estimator 9̂θY,p(h) implemented with bandwidths h = ph−,h+q that follows

model (3.2) is:
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9θY,p(h) =

«

9βY,p(h)
9γY,p(h)

ff

, 9βY,p(h) ∈ R2+2p, 9γY,p(h) = ( 9γY,p,+(h), 9γY,p,−(h)) ∈ R2m,

9̂θY,p(h) = argmin
b−,b+,γ

n

∑
d=1

´

Yd − r−,p p∆dq
′ b−− r+,p p∆dq

′ b+− 9Z′
dγ

¯2
Kh p∆dq ,

where b− ∈ R1+p,b+ ∈ R1+p,γ ∈ R2m, and

r−,p(u) := 1(u < 0)rp(u), r+,p(u) := 1(u ≥ 0)rp(u).

so that

R̃−,p(h) =
„

1(∆1 < 0)rp

ˆ

∆1

h

˙

, · · · ,1(∆n < 0)rp

ˆ

∆n

h

˙ȷ′

n×(p+1)

and

R̃+,p(h) =
„

1(∆1 ≥ 0)rp

ˆ

∆1

h

˙

, · · · ,1(∆n ≥ 0)rp

ˆ

∆n

h

˙ȷ′

n×(p+1)

Let

R̃p(h) =
´

R̃−,p(h−)H−1
p (h−) R̃+,p(h+)H−1

p (h+)
¯

n×2(p+1)

and

W(h) = pK−(h−)+K+(h+)qn×n

The normal equations associated with this model are

˜

R̃p(h)′W(h)R̃p(h) R̃p(h)′W(h) 9Z
9Z′W(h)R̃p(h) 9Z′W(h) 9Z

¸˜

9̂βY,p(h)
9̂γY,p(h)

¸

=

˜

R̃p(h)′W(h)Y
9Z′W(h)Y

¸

where

9Z = rX1Z1, · · · ,XnZn,(1−X1)Z1, · · · ,(1−Xn)Zns
′
n×2m

and

XdZd = rXdZd1,XdZd2, · · · ,XdZdms
′ , d = 1,2, · · · ,n

(1−Xd)Zd = r(1−Xd)Zd1,(1−Xd)Zd2, · · · ,(1−Xd)Zdms
′ , d = 1,2, · · · ,n

From these equations, we can assert that
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R̃p(h)′W(h)R̃p(h) 9̂βY,p(h)+ R̃p(h)′W(h) 9Z 9̂γY,p(h) = R̃p(h)′W(h)Y

and solving for 9̂βY,p(h):

9̂βY,p(h) = [R̃p(h)′W(h)R̃p(h)]−1R̃p(h)′W(h)Y− [R̃p(h)′W(h)R̃p(h)]−1R̃p(h)′W(h) 9Z 9̂γY,p(h)

But notice that

ˆ̃
βY,p(h) = (R̃p(h)′W(h)R̃p(h))−1R̃p(h)′W(h)Y

and

ˆ̃
β
′
9Z,p(h) = (R̃p(h)′W(h)R̃p(h))−1R̃p(h)′W(h) 9Z

ˆ̃
β
′
9Z,p(h) =

´

ˆ̃
β XdZd1,p(h) · · · ˆ̃

β XdZdm,p(h)
ˆ̃
β (1−Xd)Zd1,p(h) · · · ˆ̃

β XdZm,p(h)
¯′

(p+1)×2m

where ˆ̃
β Zℓ,p(h) is the local polynomial estimator obtained when Zℓ is used as the dependent variable in

the method described in Appendix B.3.

Hence

9̂βY,p(h) =
ˆ̃
βY,p(h)−

ˆ̃
β
′
Z,p(h) 9̂γY,p(h)

Finally, notice that for each l = 1, · · · ,m:

ˆ̃
β XdZdl ,p(h) =

ˆ̃
β XdZdl ,p,+(h)−

ˆ̃
β XdZdl ,p,−(h) =

ˆ̃
β XdZdl ,p,+(h)

ˆ̃
β (1−Xd)Zdl ,p(h) =

ˆ̃
β (1−Xd)Zdl ,p,+(h)−

ˆ̃
β (1−Xd)Zdl ,p,−(h) =− ˆ̃

β (1−Xd)Zdl ,p,−(h)

So that

9̂βY,p(h) =
ˆ̃
βY,p(h)−

”

ˆ̃
β
′
XdZdl ,p,+(h) 9̂γY,p,+(h)− ˆ̃

β
′
(1−Xd)Zdl ,p,−(h) 9̂γY,p,−(h)

ı

The result follows by examining the first component of this vector.

■

B.5 Proof of Theorem 2

I begin with a pair of lemmas:
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Lemma 2.1. Whenever model (3.2) is used for estimating local polynomial estimators, the following identity

holds using a bandwidth sequence h = (h−,h+):

9̂γY,p(h) = 9Γp(h)−1 9ϒY,p(h)

where

9Γp(h) = 9Z′K− ph−q 9Z/n−ϒ 9Z−p ph−q
′
Γ
−1
−,p(h−)ϒ 9Z−,p ph−q

+ 9Z′K+ ph+q 9Z/n−ϒ 9Z+p ph+q
′
Γ
−1
+,p ph+qϒ 9Z+,p ph+q ,

9ϒY,p(h) = 9Z′K− ph−qY/n−ϒ 9Z−,p ph−q
′
Γ
−1
−,p(h−)ϒY−p ph−q

+ 9Z′K+ ph+qY/n−ϒ 9Z+p ph+q
′
Γ
−1
+,p ph+qϒY+,p ph+q .

Proof. This equality is mentioned by Calonico et al. (2019a) on page 17 without formal proof. For the sake

of completeness, I provide proof of this result.

Depart from the setup presented in Appendix B.4 and notice that the normal equations associated with

the model are

˜

9̂βY,p(h)
9̂γY,p(h)

¸

=

˜

R̃p(h)′W(h)R̃p(h) R̃p(h)′W(h) 9Z
9Z′W(h)R̃p(h) 9Z′W(h) 9Z

¸−1 ˜

R̃p(h)′W(h)Y
Z′W(h)Y

¸

Following the block matrix inversion formula:

˜

R̃p(h)′W(h)R̃p(h) R̃p(h)′W(h) 9Z
9Z′W(h)R̃p(h) 9Z′W(h) 9Z

¸−1

=

˜

A11 A12

A21 A22

¸−1

=

˜

A−1
11·2 −A−1

11·2A12A−1
22

−A−1
22·1A21A−1

11 −A−1
22·1

¸

where

A−1
11·2 = (A11 −A12A−1

22 A21)
−1

A−1
22·1 = (A22 −A21A−1

11 A2)
−1

Standard matrix calculations result in

˜

9̂βY,p(h)
9̂γY,p(h)

¸

=

˜

[R̃p(h)′M2R̃p(h)]−1R̃p(h)′M2Y
[ 9Z′M1 9Z]−1 9Z′M1Y

¸

where
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M1 = W(h)−W(h)R̃p(h)(R̃p(h)′W(h)R̃p(h))−1R̃p(h)′W(h)

M2 = W(h)−W(h) 9Z( 9Z′W(h) 9Z)−1 9Z′W(h)

Now, using the identity

W(h)R̃p(h) = K−(h−)Rp(h−)H−1
p (h−)+K+(h+)Rp(h+)H−1

p (h+)

then standard simplifications yield

9̂γY,p(h) = [ 9Z′M1Z]−1 9Z′M1Y = 9Γp(h)−1 9ϒY,p(h)

■

It follows from Lemma 2.1 that

9̂γY,p,+(h) = 9Γp+(h)−1 9ϒY,p,+(h)

9̂γY,p,−(h) = 9Γp−(h)−1 9ϒY,p,−(h)

where

9Γp,−(h) =Z′K− ph−qZ/n−ϒZ−p ph−q
′
Γ
−1
−,p(h−)ϒZ−,p ph−q

9Γp,+(h) =Z′K+ ph+qZ/n−ϒZ+p ph+q
′
Γ
−1
+,p ph+qϒZ+,p ph+q ,

9ϒY,p,−(h) =Z′K− ph−qY/n−ϒZ−,p ph−q
′
Γ
−1
−,p(h−)ϒY−p ph−q

9ϒY,p,+(h) =Z′K+ ph+qY/n−ϒZ+p ph+q
′
Γ
−1
+,p ph+qϒY+,p ph+q .

The following lemma characterizes these estimators asymptotically.

Lemma 2.2. Under regularity assumptions RA-1, RA-2, RA-3 and bandwidth sequences h such that nmin{h−,h+}→
∞ and max{h−,h+}→ 0

9Γp,+(h) = aσ
2
Z++oP(1)

9Γp,−(h) = aσ
2
Z−+oP(1)

and

9ϒY,p,+(h) = aE
“`

Zd(0)−µZ−(∆d)
˘

Yd(0)|∆d = 0
‰

+oP(1)

9ϒY,p,−(h) = aE
“`

Zd(1)−µZ+(∆d)
˘

Yd(1)|∆d = 0
‰

+oP(1)

where
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a = f (0)
∫ 0

−∞

K(u)du = f (0)
∫

∞

0
K(u)du

and

µZ− = µZ−(0), µZ+ = µZ+(0), σ
2
Z− = σ

2
Z−(0), σ

2
Z+ = σ

2
Z+(0)

Proof. See Lemma SA-6 of Calonico et al. (2019a). ■

I now proceed with the Theorem’s proof:

Proof. From Lemmas 2.1 and 2.2 it follows that

9̂γY,p,−(h)
P−→ (σ2

Z−)
−1E

“`

Zd(0)−µZ−(∆d)
˘

Yd(0)|∆d = 0
‰

9̂γY,p,+(h)
P−→ (σ2

Z+)
−1E

“`

Zd(1)−µZ+(∆d)
˘

Yd(1)|∆d = 0
‰

I only prove the sub-index “+” case since the other case is identical. From Assumption 2′ it can be

deduced that

E
“`

Zd(1)−µZ+(∆d)
˘

Yd(1)|∆d = 0
‰

= E
“`

Zid −µZ+(∆id)
˘

Yid(1)|∆id = 0,Xid = 1,X jd = 0
‰

= E
“`

Zid −µZ+(∆id)
˘

(τd +Z′
idγ)|∆id = 0,Xid = 1,X jd = 0

‰

= E
“`

Zid −µZ+(∆id)
˘

Z′
idγ)|∆id = 0,Xid = 1,X jd = 0

‰

= E
”

`

Zid −µZ+(∆id)
˘`

Zid −µZ+(∆id)
˘′

γ)|∆id = 0,Xid = 1,X jd = 0
ı

+ E
“`

Zid −µZ+(∆id)
˘

µZ+(∆id)
′
γ)|∆id = 0,Xid = 1,X jd = 0

‰

= E
”

`

Zid −µZ+(∆id)
˘`

Zid −µZ+(∆id)
˘′ |∆id = 0,Xid = 1,X jd = 0

ı

γ

= V[Zid(1)|∆id = 0,Xid = 1,X jd = 0]γ

= V[Zd(1)|∆d = 0]γ

= σ
2
Z+ γ

Therefore

9̂γY,p,+(h)
P−→ (σ2

Z+)
−1

σ
2
Z+γ = γ

■

B.6 Proof of Theorem 3

Proof. From Theorem 1, we know that
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9̂τY = τ̂PCRD −
”

( ˆ̃τZ,+)
′ 9̂γ+− ( ˆ̃τZ,−)

′ 9̂γ−

ı

and from Theorem 2, we have established that

9̂γ(h) P−→ γ

Moreover, making use of Assumption 3

ˆ̃τ ′
Z,+

P−→ δ
′
+, ˆ̃τ ′

Z,+
P−→ δ

′
−

Hence

( ˆ̃τZ,+)
′ :̂γ+− ( ˆ̃τZ,−)

′ :̂γ−
P−→ δ

′
+γ −δ

′
−γ = (δ+−δ−)

′
γ = δ

′
γ = bPCRD

Using Assumption 1, this means that

9̂τY
P−→ (τPCRD +bPCRD)−bPCRD = τPCRD

■

B.7 Proof of Theorem 4

Proof. I provide an alternative proof to the one provided in Frölich and Huber (2019b, p.2), using the alter-

native set of regularity assumptions listed in RA-4 and Assumption 4.

Let Uη = [−η ,η ] be a symmetric closed neighborhood around 0 of length η > 0. Further denote by

U+
η = [0,η ] and U−

η = [−η ,0]. Using assumption a) of RA-4

lim
η→0

P(∆d ≥ 0|∆d ∈Uη) = lim
η→0

F∆(η)−F∆(0)
F∆(η)−F∆(−η)

=
[F∆(η)−F∆(0)]/η

[F∆(η)−F∆(0)]/η − [F∆(−η)−F∆(0)]/η

=
f∆(0)

f∆(0)+ f∆(0)

=
1
2

Hence, leveraging assumption b) of RA-4
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lim
η→0

P(Zd ≤ z|∆d ∈Uη) = lim
η→0

P(Zd ≤ z|∆d ∈U−
η )P(∆d ≤ 0|∆d ∈Uη)

+ lim
η→0

P(Zd ≤ z|∆d ∈U+
η )P(∆d > 0|∆d ∈Uη)

=
F−

Zd(0)|∆d
(z|0)+F+

Zd(1)|∆d
(z|0)

2

Following assumption c) of RA-4, then

lim
η→0

fZ|∆d∈Uη
(z) =

f+Zd(0)|∆d
(z|0)− f+Zd(1)|∆d

(z|0)
2

Next, given assumption d) of RA-4, the dominated convergence theorem allows to switch the limit and

integral operators. Hence, invoking Assumption 4

lim
η→0

∫
`

E[Yd |Zd = z,∆d ∈U+
η ]−E[Yd |Zd = z,∆d ∈U−

η ]
˘

fZ|∆d∈Uη
(z)dz =∫

lim
η→0

`

E[Yd |Zd = z,∆d ∈U+
η ]−E[Yd |Zd = z,∆d ∈U−

η ]
˘

lim
η→0

fZ|∆d∈Uη
(z)dz =

∫
`

m+(z,0)−m−(z,0)
˘

˜

f−Zd(0)|∆d
(z|0)+ f+Zd(1)|∆d

(z|0)
2

¸

dz

Likewise, observe that

E[Yd(1)−Yd(0)|∆d = 0] =
∫

E[Yd(1)−Yd(0)|∆d = 0,Zd = z] fZ|∆d=0(z)dz

Thus,

∫
`

E[Yd |Zd = z,∆d ∈U+
η ]−E[Yd |Zd = z,∆d ∈U−

η ]
˘

fZ|∆d∈Uη
(z)dz =∫

`

E[Yd |Zd = z,∆d ∈U+
η ]−E[Yd |Zd = z,∆d ∈U−

η ]
˘

fZ|∆d∈Uη
(z)dz+∫

E[Yd(1)−Yd(0)|∆d = 0,Zd = z] fZ|∆d=0(z)dz−∫
E[Yd(1)−Yd(0)|∆d = 0,Zd = z] fZ|∆d=0(z)dz

where the third and fourth lines add to zero. Rearranging terms leads to
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∫
`

E[Yd |Zd = z,∆d ∈U+
η ]−E[Yd |Zd = z,∆d ∈U−

η ]
˘

fZ|∆d∈Uη
(z)dz =

E[Yd(1)−Yd(0)|∆d ∈Uη ]+∫
´

E[Yd(1)|Zd = z,∆d ∈U+
η ] fZ|∆d∈Uη

(z)−E[Yd(1)|Zd = z,∆d = 0] fZ|∆d=0(z)
¯

dz−∫
´

E[Yd(0)|Zd = z,∆d ∈U−
η ] fZ|∆d∈Uη

(z)−E[Yd(0)|Zd = z,∆d = 0] fZ|∆d=0(z)
¯

dz

Using the dominated convergence theorem again and Assumption 4

lim
η→0

∫
´

E[Yd(1)|Zd = z,∆d ∈U+
η ] fZ|∆d∈Uη

(z)−E[Yd(1)|Zd = z,∆d = 0] fZ|∆d=0(z)
¯

dz = 0

and

lim
η→0

∫
´

E[Yd(0)|Zd = z,∆d ∈U−
η ] fZ|∆d∈Uη

(z)−E[Yd(0)|Zd = z,∆d = 0] fZ|∆d=0(z)
¯

dz = 0

Consequently,

lim
η→0

∫
`

E[Yd |Zd = z,∆d ∈U+
η ]−E[Yd |Zd = z,∆d ∈U−

η ]
˘

fZ|∆d∈Uη
(z)dz = E[Yd(1)−Yd(0)|∆d = 0]

which completes the proof in that

E[Yd(1)−Yd(0)|∆d = 0] =
∫

`

m+(z,0)−m−(z,0)
˘

˜

f−Zd(0)|∆d
(z|0)+ f+Zd(1)|∆d

(z|0)
2

¸

dz

■

B.8 Proof of Theorem 5

Proof. While it is possible to demonstrate this assertion directly, I will opt to prove that the suggested es-

timator is asymptotically equivalent to the estimators proposed by Frölich and Huber (2019a), which are

consistent estimators of E[Yd(1)−Yd(0)|∆d = 0] whenever Assumption 4 holds. This serves two purposes.

First, the authors already have detailed proof in their article relating the asymptotic properties of their esti-

mators. Second, illustrating this relationship helps to understand better why the estimator works.

To begin with, Frölich and Huber (2019a) study non-parametric estimators that can potentially estimate

the unconditional causal effect E[Yd(1)−Yd(0)|∆d = 0] following the result illustrated in Theorem 4. In

particular, they find that provided some regularity assumptions, all estimators θ̂ of the class of estimators

described in (B.1) can consistently estimate this effect.
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θ̂ =

n
∑

d=1
pm̂+(Zd ,0)− m̂−(Zd ,0)q K̄

ˆ

∆d

h̄

˙

n
∑

d=1
K̄

ˆ

∆d

h̄

˙ (B.1)

These estimators are obtained from a two-step procedure that mimics the logic induced by Theorem

4. First, the researcher must estimate non-parametrically the functions m+(·,0) and m−(·,0) using a non-

parametric regression method. Next, the resulting estimates m̂+(·,0) and m̂−(,0) are evaluated at the ob-

served values of the covariates and averaged over using a kernel function K̄(·) over a bandwidth h̄ > 0.

In particular, Frölich and Huber (2019a) suggests estimating m+(·,0) using local polynomials. For any

fixed z, m̂+(z,0) is the value a(z) that solves

argmin
a(z),b(z),c(z)

n

∑
d=1

`

Yd −a(z)−b(z)∆d − (Zd − z)′c(z)
˘2 Kd1[∆d ≥ 0]

where Kd is a product kernel

Kd = Kh p∆dq

m

∏
l=1

K̃hz

ˆ

Zdl − zl

hz

˙

and K̃hz(·) is a kernel of order greater than 2. The estimate for m−(·,0) is determined in the same way,

using the sample at the left side of the threshold.

I summarize the consistency results for estimators of class (B.1) in the following lemma.

Lemma 5.1 (Frölich and Huber (2019a), Proposition 2.). Under Assumption 4, and regularity conditions

RA-4 and RA-5, estimators of the class (B.1) are consistent estimators of τPCRD.

Proof. I refer to the original proof in the article. However, the intuition follows from the proof of Theorem

4. Notice that, for an interval Uη = [−η ,η ], η > 0:

lim
h̄→0

n
∑

d=1
pm̂+(Zd ,0)− m̂−(Zd ,0)q K̄

ˆ

∆d

h̄

˙

n
∑

d=1
K̄

ˆ

∆d

h̄

˙ ≈ lim
η→0

∫
`

m̂+(z,0)− m̂−(z,0)
˘

fZ|∆d∈Uη
(z)dz

≈ lim
η→0

∫
`

m+(z,0)−m−(z,0)
˘

fZ|∆d∈Uη
(z)dz = τPCRD

■

Now consider the following result for linear-in-parameters covariate-adjusted polynomial estimators.

Lemma 5.2. For any vector z ∈ Rm, the algebraic solution to the problem
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argmin
b−,b+,γ

n

∑
d=1

´

Yd − r−,p p∆dq
′ b−− r+,p p∆dq

′ b+− ( 9Zd − 9z)′γ
¯2

Kh p∆dq

is

:̂βY,p(h)[z] =
ˆ̃
βY,p(h)−

”

ˆ̃
β
′
XdZdl ,p,+(h):̂γY,p,+(h)− ˆ̃

β
′
(1−Xd)Zdl ,p,−(h):̂γY,p,−(h)

ı

+ z′(:̂γY,p,+(h)− :̂γY,p,−(h))

where 9z = (z,z)′.

Proof. This result follows directly from the procedure described in Appendix B.4, by changing Zid to Zid −z

.

■

Lemma 5.2 is enough to prove part a). I now describe the link between these estimators and a particular

linear-in-parameters specification. Let

Z̄NW =

˜

n

∑
d=1

ZdK̄
ˆ

∆d −0
h̄

˙

¸

N n

∑
d=1

K̄
ˆ

∆d −0
h̄

˙

,

be an estimate of the average characteristics at the threshold using a Nadaraya–Watson kernel estimator.

This procedure consists in averaging characteristics using a kernel function K̄(·) over a bandwidth h̄ > 0,

aiming to “localize” the average around the point ∆d = 0.

Lemma 5.3. The estimator :̂τY,p(h)[Z̄NW ] belongs to the class (B.1).

Proof. Since local polynomial estimators consistently estimate the regression functions under Regularity

assumptions RA-4 and RA-5, it follows that

m̂+(z,0) = e′0
”

ˆ̃
βY,p,+(h)−

ˆ̃
β
′
XdZdl ,p,+(h):̂γY,p,+(h)+ z′ :̂γY,p,+(h)

ı

P−→ m+(z,0)

and

m̂−(z,0) = e′0
”

ˆ̃
βY,p,−(h)−

ˆ̃
β
′
XdZdl ,p,−(h):̂γY,p,−(h)+ z′ :̂γY,p,−(h)

ı

P−→ m−(z,0)

Hence

:̂τY,p(h)[z] = e′0 :̂βY,p(h)[z] = m̂+(z,0)− m̂−(z,0)

Following Lemma 5.2, the estimator resulting from the local model (3.4) is
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:̂τY,p(h)[Z̄NW ] = ˆ̃τY,p(h)−
”

ˆ̃τ ′
XdZdl ,p,+(h):̂γY,p,+(h)− ˆ̃τ ′

(1−Xd)Zdl ,p,−(h):̂γY,p,−(h)
ı

+ Z̄′
NW (:̂γY,p,+(h)− :̂γY,p,−(h))

However, using the definition of Z̄NW , the estimator can be reformulated as

:̂τY,p(h)[Z̄NW ]

=

n
∑

d=1

”

ˆ̃τY,p(h)−
”

ˆ̃τ ′
XdZdl ,p,+(h):̂γY,p,+(h)− ˆ̃τ ′

(1−Xd)Zdl ,p,−(h):̂γY,p,−(h)
ı

+Z′
d(:̂γY,p,+(h)− :̂γY,p,−(h))

ı

K̄
ˆ

∆d

h̄

˙

n
∑

d=1
K̄

ˆ

∆d

h̄

˙

=

n
∑

d=1
pm̂+(Zd ,0)− m̂−(Zd ,0)q K̄

ˆ

∆d

h̄

˙

n
∑

d=1
K̄

ˆ

∆d

h̄

˙

Consequently, we have proven that :̂τY (Z̄NW ) belongs to the estimator class (B.1)21.

■

To end the argument, if h̄ = h and K̄(·) = K(·), note that Z̄NW can be written using local polynomial

estimators of degree p = 0

Z̄NW =
ˆ̃τXdZ,0,+(h,h)+ ˆ̃τ(1−Xd)Z,0,−(h,h)

2

But this yields the same limit in probability that using a local polynomial estimator of degree p. Hence

Z̄ =
ˆ̃τXdZ,p,+(h)+ ˆ̃τ(1−Xd)Z,p,−(h)

2
= Z̄NW +oP(1)

so that, a direct application of the continuous mapping theorem results in

τ̂
PC
PCRD = :̂τY,p(h)[Z̄] = :̂τY,p(h)[Z̄NW ]+oP(1) = τPCRD +oP(1)

This proves part b). Part c) is an immediate consequence of parts a) and b).

■

B.9 Bandwidth choice and asymptotic normality of the bias-corrected estimator

Since the asymptotics of covariate-adjusted local polynomial estimators has been extensively developed in

Calonico et al. (2019b), the bias-corrected estimator’s specific structure makes inference fairly straightfor-

21K̃(·) is the uniform kernel in this application.
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ward. This Appendix briefly shows how their results can be adapted to my work.

The first observation is that all relevant estimators share a common functional form. To see this, recall

from Theorem 5 that

τ̂
BC
PCRD = ˆ̃τY (h)−

1
2

”

( ˆ̃τZ,+(h)− ˆ̃τZ,−(h))′(:̂γ+(h)+ :̂γ−(h))
ı

Which in vector terms can be expressed as

τ̂
BC
PCRD =

´

1 −1
2(:̂γ+(h)+ :̂γ−(h))

¯

˜

ˆ̃τY (h)
ˆ̃τZ(h)

¸

= t̂′1(h)

˜

ˆ̃τY (h)
ˆ̃τZ(h)

¸

Similarly, the bias estimate of the bias

b̂PCRD =
1
2

”

( ˆ̃τZ,+(h)− ˆ̃τZ,−(h))′(:̂γ+(h)+ :̂γ−(h))
ı

=
´

0 1
2(:̂γ+(h)+ :̂γ−(h))

¯

˜

ˆ̃τY (h)
ˆ̃τZ(h)

¸

= t̂′2(h)

˜

ˆ̃τY (h)
ˆ̃τZ(h)

¸

Finally, the bias of a particular component of the bias b̂l can be expressed as

b̂l =
´

0 0 · · · 1
2 [(:̂γ−)l +(:̂γ+)l] · · · 0

¯

˜

ˆ̃τY (h)
ˆ̃τZ(h)

¸

= t̂′3,l(h)

˜

ˆ̃τY (h)
ˆ̃τZ(h)

¸

As a result, in general terms, all the estimators derived can are member of the family

Fp,m =

{
θ̂ : θ̂ = t̂

θ̂

˜

ˆ̃τY (h)
ˆ̃τZ(h)

¸

, t̂
θ̂

P−→ t
θ̂
∈ Rm+1

}
where p indicates the polynomial degree used for the local polynomial estimators and m is the number

of covariates. Finally, for notation consistency, denote θ = p-lim
n→∞

θ̂ .

B.9.1 Bandwidth choice

Bandwidth sequence choices for local polynomial estimators are usually based on some optimality criterion.

The most common target is to minimize the Mean Square Error (MSE) to make the best out of the bias-

variance tradeoff these estimators face (Calonico et al., 2014; Imbens & Kalyanaraman, 2012). In brief,

as bandwidth sizes shrink, the local model better approximates the conditional expectation function at the

threshold, thus reducing bias. However, as the estimation windows narrow, fewer observations available

increase the estimator’s variability. The MSE-optimal estimator is then the one that balances most effectively

these countervailing forces.

Theorem A-1 (Theorem 1, Calonico et al. (2019b)). Suppose that regularity assumptions RA-1, RA-2, and

RA-2 hold. Then for any θ̂ ∈ Fp,m and bandwidth h = h− = h+.
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MSE[θ̂(h)] = h2(1+p)B2
θ̂
[1+oP(1)]+

1
nh

V
θ̂

where B
θ̂

and V
θ̂

are the pre-asymptotic stochastic approximations to the conditional bias and variances

respectively.

Theorem A-1 implies that the optimal bandwidth satisfies

h∗MSE =

«

1
2n(1+ p)

V
θ̂

B2
θ̂
[1+oP(1)]

ff
1

3+2p

This means that a plug-in estimator can be formulated using consistent estimates B̂ and V̂ of V
θ̂

and B
θ̂

through the formula

ĥ∗MSE =

„

1
2n(1+ p)

V̂
B̂2

ȷ

1
3+2p

For the case in which bandwidths can differ at the left and right of the threshold, note that B
θ̂
= B

θ̂+
−

B
θ̂−

, this is the bias is the difference of the bias observed at each side of the threshold. Similarly, V
θ̂
=

V
θ̂+

+V
θ̂−

. So different bandwidths can be formulated using appropriate estimators as follows:

ĥ∗−,MSE =

«

1
2n(1+ p)

V̂−

B̂2
−

ff
1

3+2p

, ĥ∗+,MSE =

«

1
2n(1+ p)

V̂+

B̂2
+

ff
1

3+2p

The exact formulas for these estimators will be described in the next subsection.

B.9.2 Asymptotic normality

To develop valid asymptotic distributional approximations and inference procedures, Calonico et al. (2019b)

rely on nonparametric robust bias correction as suggested by Calonico et al. (2014) and Calonico, Cattaneo,

and Farrell (2018). This adjustment is necessary because MSE-optimal bandwidths are systematically too

“large”, leading to a first-order bias in the distributional approximation. Therefore, this bias must be esti-

mated and removed for the inference to be valid.

Consider the general formulation proved in Appendix B.4 of the equivalence formula formulated in

Theorem 1:

9̂βY,p(h) =
ˆ̃
βY,p(h)−

”

ˆ̃
β
′
XdZdl ,p,+(h) 9̂γY,p,+(h)− ˆ̃

β
′
(1−Xd)Zdl ,p,−(h) 9̂γY,p,−(h)

ı

This means that

τ̂
BC
PCRD = T1(h)vec( ˆ̃

βS,p(h))

where

22



T1(h) =

˜

e0

−1
2(:̂γ+(h)+ :̂γ−(h))⊗ e0

¸

=

˜

1

−1
2(:̂γ+(h)+ :̂γ−(h))

¸

⊗ e0 = (t̂1(h)⊗ e0)

⊗ denotes the Kronecker product, and

ˆ̃
βS,p(h) = ˆ̃

βS,+,p(h+)− ˆ̃
βS,−,p(h−)

with

ˆ̃
βS,+,p(h) = [ ˆ̃

βY,+,p(h),
ˆ̃
βZ,+,p(h)],

ˆ̃
βS,−,p(h) = [ ˆ̃

βY,−,p(h),
ˆ̃
βZ,−,p(h)]

Following this exposition, any estimator θ̂ ∈ Fp,m can be expressed as

θ̂(h) = (t
θ̂
⊗ e0)vec( ˆ̃

βS,p(h))

Now, given the matrix expressions of the local polynomials described in Appendix B.3, it directly fol-

lows from the identity vec(ABC) = (C′⊗A)vec(B) (for conformable matrices A,B,C) that

vec( ˆ̃
βS,−,p(h)) =

1
?

nh

“

I1+d ⊗H−1
p (h)P−,p(h)

‰

S,

vec( ˆ̃
βS,+,p(h)) =

1
?

nh

“

I1+d ⊗H−1
p (h)P+,p(h)

‰

S

with Id denoting the identity matrix of dimension d.

I know present a series of results that characterize estimators θ̂ ∈ Fp,m by slightly modifying their orig-

inal formulations presented in Calonico et al. (2019a):

The pre-asymptotic bias B
θ̂ ,p(h) = B

θ̂+,p(h)−B
θ̂−,p(h) and its asymptotic counterpart B

θ̂ ,p := B
θ̂+,p−

B
θ̂−,p are characterized by

B
θ̂−,p(h) := e′0Γ

−1
−,p(h)ϑ−,p(h)

t′
θ̂

µ
(p+1)
S−

(p+1)!
P−→B

θ̂−,p,

B
θ̂+,p(h) := e′0Γ

−1
+,p(h)ϑ+,p(h)

t′
θ̂

µ
(p+1)
S+

(p+1)!
P−→B

θ̂+,p

where µS− = µS−(0) and µS+ = µS+(0).

Similarly, the pre-asymptotic variance V
θ̂ ,p(h) = V

θ̂−,p(h) + V
θ̂+,p(h) and its asymptotic counterpart

V
θ̂ ,p := V

θ̂−,p +V
θ̂+,p, are characterized by
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V
θ̂−,p(h) :=

”

t′
θ̂
⊗ e′0P−,p(h)

ı

ΣS−
“

t
θ̂
⊗P−,p(h)e0

‰ P−→V
θ̂−,p,

V
θ̂+,p(h) :=

”

t′
θ̂
⊗ e′0P+,p(h)

ı

ΣS+
“

t
θ̂
⊗P+,p(h)e0

‰ P−→V
θ̂+,p

Notice that pre-asymptotic variances can be estimated from the data, so that V̂
θ̂
(h) = V

θ̂
(h). On the

contrary, pre-asymptotic biases involve unknown quantities. Consequently, to construct pre-asymptotic es-

timates of the bias terms, the unknowns, µ
(p+1)
S− and µ

(p+1)
S+ , are replaced by a q-th order (p < q) local

polynomial estimate using a complementary bandwidth b. This leads to the pre-asymptotic feasible bias

estimates B̂
θ̂ ,p,q(h,b) := B̂

θ̂+,p,q(h,b)−B̂
θ̂−,p,q(h,b) with

B̂
θ̂−,p,q(h,b) := e′0Γ

−1
−,p(h)ϑ−,p(h)

t′
θ̂

9µ
(p+1)
S−,q (b)

(p+1)!
,

B̂
θ̂+,p,q(h) := e′0Γ

−1
+,p(h,b)ϑ+,p(h)

t′
θ̂

9µ
(p+1)
S+,q (b)

(p+1)!

where 9µ
(p+1)
S−,q (b) and 9µ

(p+1)
S+,q (b) are the covariate-adjusted local polynomial estimates of the (p+ 1)-th

derivatives using a polynomial of degree q.

As explained before, MSE-optimal bandwidths are too big to eliminate first-order bias. This motivates

the need to recenter estimates using leading bias estimates for asymptotic estimations to remain valid. For a

pair of bandwidth sequences (h,b) = (h+,h−,b+,b−), define the recentered statistic as

θ̂Centered,p,q(h,b) = θ̂(h)− [h1+p
+ B̂

θ̂+,p,q(h+,b+)−h1+p
− B̂

θ̂−,p,q(h−,b−)]

It follows from the formulas that

θ̂Centered,p,q(h,b) =
1

?
nh

”

t′
θ̂
⊗ e′0

`

PCentered
+,,p,q (h+,b+)−PCentered

−,,p,q (h−,b−)
˘

ı

S,

where

PCentered
−,p,q (h,b) =

?
hΓ

−1
−,p(h)

“

Rp(h)′K−(h)− (h/b)1+p
ϑ−,p(h)e′p+1Γ

−1
−,q(b)Rq(b)′K−(b)

‰

/
?

n,

PCentered
+,p,q (h,b) =

?
hΓ

−1
+,p(h)

“

Rp(h)′K+(h)− (h/b)1+p
ϑ+,p(h)e′p+1Γ

−1
+,q(b)Rq(b)′K+(b)

‰

/
?

n

Theorem A-2. Suppose that regularity assumptions RA-1, RA-2, RA-3, RA-4 and RA-5 hold. Then, for any

θ̂ ∈ Fp,m , consider the following standardized statistic

TS,θ̂ ,q(h,b) =
θ̂Centered,p,q(h,b)−θ

b

V[θ̂Centered,p,q(h,b)]

where
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V[θ̂Centered,p,q(h,b)] =
1

nh−
VCentered

S−,θ̂ ,p,q(h−,b−)+
1

nh+
VCentered

S+,θ̂ ,p,q(h+,b+)

with

VCentered
S−,θ̂ ,p,q(h−,b−) = (t

θ̂
⊗ e0)

′ “I1+d ⊗PCentered
−,p,q (h−,b−)

‰

ΣS
“

I1+d ⊗PCentered
−,p,q (h−,b−)′

‰

(t
θ̂
⊗ e0),

VCentered
S+,θ̂ ,p,q(h+,b+) = (t

θ̂
⊗ e0)

′ “I1+d ⊗PCentered
+,p,q (h+,b+)

‰

ΣS
“

I1+d ⊗PCentered
+,p,q (h+,b+)′

‰

(t
θ̂
⊗ e0),

If ρ ≥ 1+ q, p < q, nmin{h−,h+} → ∞, nh2p+3
− max{h2

−,b
2(q−p)
− } → 0, nh2p+3

+ max{h2
+,b

2(q−p)
+ } → 0

and limsup
n→∞

max{h−/b−,h+/b+}< ∞, then

TS,θ̂ ,q
d−→N (0,1)

Proof. The proof follows as in Lemma SA-11, Calonico et al. (2019a), using Linderberg-Feller’s triangular

array central limit theorem (van der Vaart, 1998, p.20).

■

Theorem A-2 states that even when using MSE-optimal bandwidths, an asymptotically-normal pivot

for θ̂ can be constructed by explicitly removing the first-order bias. Therefore, provided some consistent

estimates Σ̂S of ΣS, it is possible to create an asymptotically normal pivotal statistic by replacing unknown

quantities with their consistent estimators. These can be constructed using the traditional plug-in residuals

estimator or a nearest-neighbor approach as developed by Calonico et al. (2014), which can be formulated

to allow unrestricted forms of heteroskedasticity as well as clustered data.

Consequently, the distribution for the bias-corrected coefficient is:

Corollary A-2.1. Under the assumptions of Theorem B.9, it follows that

TS,τ̂BC
PCRD,q

(h,b) =
τ̂BC

PCRD,Centered,p,q(h,b)− τPCRD
b

V̂[τ̂BC
PCRD,Centered,p,q(h,b)]

d−→N (0,1)

where

τ̂
BC
PCRD,Centered,p,q(h,b) = τ̂

BC
PCRD − [h1+p

+ B̂
τ̂BC

PCRD,+,p,q(h+,b+)−h1+p
− B̂

τ̂BC
PCRD,−,p,q(h−,b−)]

and

V̂[τ̂BC
PCRD,Centered,p,q(h,b)] =

1
nh−

V̂Centered
S−,τ̂BC

PCRD,p,q
(h−,b−)+

1
nh+

V̂Centered
S+,τ̂BC

PCRD,p,q
(h+,b+)

with
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V̂Centered
S−,τ̂BC

PCRD,p,q
(h−,b−) = (t̂1 ⊗ e0)

′ “I1+d ⊗PCentered
−,p,q (h−,b−)

‰

Σ̂S
“

I1+d ⊗PCentered
−,p,q (h−,b−)′

‰

(t̂1 ⊗ e0),

V̂Centered
S+,τ̂BC

PCRD,p,q
(h+,b+) = (t̂1 ⊗ e0)

′ “I1+d ⊗PCentered
+,p,q (h+,b+)

‰

Σ̂S
“

I1+d ⊗PCentered
+,p,q (h+,b+)′

‰

(t̂1 ⊗ e0),

B.10 Connection between the restricted and complete local models

Consider the simple scenario when there are two relevant variables we observe Zd , but not Ud . Furthermore,

consider the modified covariate vectors:

:Zd = 9Zd − Z̄ ∈ R2m, :Ud = 9Ud −Ū ∈ R2

where 9Ud is defined the same as 9Zd (See Appendix B.4). Then estimating the complete model (4.1)

yields using bandwidths h = (h+,h−) and a local polynomial of degree p:

Yd = :̂αY,Full(h)+Xd :̂τY,Full(h)+ :̂β ′
Y−,Full(h)rp(∆id)+Xd

:̂β ′
Y+,Full(h)rp(∆id)+

Xd :Z′
d :̂γ+,Full(h)+(1−Xd):Z′

d :̂γ−,Full(h)+Xd :Ud :̂ρ+(h)+(1−Xd) :Ud :̂ρ−(h)+ ε̂Full(h)

And the restricted model (4.2)

Yid = :̂αY,Res(h)+Xd :̂τY,Res(h)+ :̂β ′
Y−,Res(h)rp(∆id)+Xd

:̂β ′
Y+,Res(h)rp(∆id)+

Xd :Z′
d :̂γ+,Res(h)+(1−Xd):Z′

d :̂γ−,Res(h)+ ε̂Res(h)

We are interested in studying the bias originating from unobserved confounding. For this purpose, define

yBiasp(h) = :̂τY,Full(h)− :̂τY,Res(h)

Proposition B.1. In the situation described above,

yBiasp(h) =−
”

:̂ρ+,Full(h):̂τU−Ū ,p,+(h)− :̂ρ−,Full(h):̂τU−Ū ,p,−(h)
ı

Proof. The resticted model, implemented with bandwidths h = ph−,h+q and polynomial of degree p is

obtained by solving:

argmin
b−,b+,γ

n

∑
d=1

´

Yd − r−,p p∆dq
′ b−− r+,p p∆dq

′ b+− :Z′
dγ

¯2
Kh p∆dq

Furthermore, denote the oblique projection matrix into the column space of R̃p(h) as

HW,R̃p
(h) = R̃p(h)(R̃p(h)′W(h)R̃p(h))−1R̃p(h)′W(h)
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and consider the projection matrix into the complementary subspace as Hc
W,R̃p

(h) = (In −HW,R̃p
(h)).

Using results derived in B.5, it follows that:

:̂γp,Res(h) = [:Z′W(h)Hc
W,R̃p

(h):Z′]−1 :Z′W(h)Hc
W,R̃p

(h)Y

Now, by the idempotency property of Hc
W,R̃p

(h), remark that

:̂γp,Res(h) = [:Z′W(h)Hc
W,R̃p

(h)Hc
W,R̃p

(h):Z′]−1 :Z′W(h)Hc
W,R̃p

(h)Hc
W,R̃p

(h)Y

Moreover, note that

W(h)Hc
W,R̃p

(h) = [Hc
W,R̃p

(h)]′W(h)

So that

:̂γp,Res(h) = [[Hc
W,R̃p

(h):Z]′W(h)[Hc
W,R̃p

(h) :Z]
′
]−1[Hc

W,R̃p
(h):Z]′W(h)[Hc

W,R̃p
(h)Y ]

Now, expressing the full model in matrix terms yields

Y = R̃p(h) :̂βY,p(h)+ :Z:̂γp,Full(h)+ :U :̂ρp,Full(h)+ ε̂Full

Consequently,

Hc
W,R̃p

(h)Y = Hc
W,R̃p

(h):Z:̂γp,Full(h)+Hc
W,R̃p

:U :̂ρp,Full(h)

and

:̂γp,Res(h) = :̂γp,Full(h)+ [[Hc
W,R̃p

(h):Z]′W(h)[Hc
W,R̃p

(h) :Z]
′
]−1[Hc

W,R̃p
(h):Z]′W(h)[Hc

W,R̃p
(h):U] :̂ρp,Full(h)

But observe that rearranging terms leads to

[[Hc
W,R̃p

(h):Z]′W(h)[Hc
W,R̃p

(h) :Z]
′
]−1[Hc

W,R̃p
(h):Z]′W(h)[Hc

W,R̃p
(h):U] =

[:Z′W(h)Hc
W,R̃p

(h):Z′]−1 :Z′W(h)Hc
W,R̃p

(h):U = :̂ζp(h)

where :̂ζp(h) is the solution of the weighted least squares problem given by

argmin
b−,b+,ζ

n

∑
d=1

´

[Ud −Ū ]− r−,p p∆dq
′ b−− r+,p p∆dq

′ b+− :Z′
dζ

¯2
Kh p∆dq

Hence, we have demonstrated that
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:̂γp,Res,+(h) = :̂γp,Full,+(h)+ :̂ρp,Full,+(h) :̂ζp,+(h)

:̂γp,Res,−(h) = :̂γp,Full,−(h)+ :̂ρp,Full,−(h) :̂ζp,−(h)

Now, following Theorem 5, and using the preceeding results

:̂τY,Res,p,+(h) = ˆ̃τY,p,+(h)−
1
2
( ˆ̃τZ,p,+(h)− ˆ̃τZ,p,−(h))′ :̂γp,Res,+(h)

= ˆ̃τY,p,+(h)−
1
2
( ˆ̃τZ−Z̄,p,+(h)− ˆ̃τZ−Z̄,p,−(h))

′ :̂γp,Full,+(h)

− 1
2
( ˆ̃τZ−Z̄,p,+(h)− ˆ̃τZ−Z̄,p,−(h))

′[ :̂ρp,Full,+(h) :̂ζp,+(h)]

While

:̂τY,Full,p,+(h) = ˆ̃τY,p,+(h)−
1
2
( ˆ̃τZ−Z̄,p,+(h)− ˆ̃τZ−Z̄,p,−(h))

′ :̂γp,Full,+(h)

− 1
2
( ˆ̃τU−Ū ,p,+(h)− ˆ̃τU−Ū ,p,−(h)) :̂ρ+,Full

Then

:̂τY,Full,p,+(h)− :̂τY,Res,p,+(h)=
:̂ρ+,Full(h)

2

”

( ˆ̃τZ−Z̄,p,+(h)− ˆ̃τZ−Z̄,p,−(h))
′ :̂ζp,+(h)− ( ˆ̃τU−Ū ,+(h)− ˆ̃τU−Ū ,−(h))

ı

But using Theorem 5 again:

1
2

”

( ˆ̃τZ−Z̄,p,+(h)− ˆ̃τZ−Z̄,p,−(h))
′ :̂ζp,+(h)− ( ˆ̃τU−Ū ,+(h)− ˆ̃τU−Ū ,−(h))

ı

=−:̂τU−Ū ,p,+(h)

Hence

:̂τY,Full,p,+(h)− :̂τY,Res,p,+(h) =− :̂ρ+,Full(h):̂τU−Ū ,p,+(h)

Likewise, by a similar procedure,

:̂τY,Full,p,−(h)− :̂τY,Res,p,−(h) =− :̂ρ−,Full(h):̂τU−Ū ,p,−(h)

Hence, concluding the proof insofar as

yBiasp(h) = (:̂τY,Full,p,+(h)− :̂τY,Res,p,+(h))− (:̂τY,Full,p,−(h)− :̂τY,Res,p,−(h))

■
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B.11 Charecterizing the omitted variable bias

Departing from Proposition B.1, consider the problem:

argmin
τ−,τ+,b−,b+,ζ

n

∑
d=1

´

[Ud −Ū ]− τ−(1−Xd)−b−,1((1−Xd)×∆d)−·· ·−b−,p((1−Xd)×∆d)
p

− τ+Xd −b+,1(Xd ×∆d)−·· ·−b+,p(Xd ×∆d)
p − :Z′

dζ

¯2
Kh p∆dq

The first-order conditions for τ− and τ+ associated to this problem yield

n

∑
d=1

´

Xd [Ud −Ū ]⊥∆,:Z − :̂τU−Ū ,p,+(h)Xd

¯

K p∆d/h+q = 0

n

∑
d=1

´

(1−Xd)[Ud −Ū ]⊥∆,:Z − :̂τU−Ū ,p,−(h)(1−Xd)
¯

K p∆d/h−q = 0

Where K(·) is the kernel function and [Ud −Ū ]⊥∆,:Z is the residual of (Ud −Ū) after controlling for the

local functional form of ∆p and removing the linear components assigned to :Z. More precisely,

[Ud −Ū ]⊥∆,:Z =Ud −Ū − :̂β−,p,1(h)((1−Xd)×∆p)−·· ·− :̂β−,p,p(h)((1−Xd)×∆p)
p

− :̂β+,p,1(h)(Xd ×∆p)−·· ·− :̂β+,p,p(h)(Xd ×∆p)
p − :Z′

d
:̂ζ (h)

Then

:̂τU−Ū ,p,+(h) =

n
∑

d=1
XdY⊥∆,:Z

d K p∆d/h+q

n
∑

d=1
XdK p∆d/h+q

; :̂τU−Ū ,p,−(h) =

n
∑

d=1
(1−Xd)Y

⊥∆,:Z
d K p∆d/h−q

n
∑

d=1
(1−Xd)K p∆d/h−q

Hence note that

:̂τU−Ū ,p,+(h) =
yCovK(Xd [Ud −Ū ]⊥∆,:Z,Xd)[h+]

xVarK(Xd)[h+]

Where
yCovK(Ad ,Bd)[h] =

n

∑
d=1

(Ad − ÊK(Ad)[h])(Bd − ÊK(Bd)[h])′K(∆d/h)

xVarK(Ad)[h] = yCovK(Ad ,Ad)[h], and

ÊK(Ad)[h] =

˜

n

∑
d=1

AdK(∆d/h)

¸

N n

∑
d=1

K(∆d/h)

Similarly
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:̂τU−Ū ,p,−(h) =
yCovK((1−Xd)[Ud −Ū ]⊥∆,:Z,1−Xd)[h−]

xVarK(1−Xd)[h−]

In a similar fashion, to estimate :ρ we consider the problem:

argmin
b−,b+,γ,ρ

n

∑
d=1

´

Yd − (1−Xd)rp p∆dq
′ b−−Xdrp p∆dq

′ b+− :Z′
γ − :U′

ρ

¯2
Kh p∆dq

Where, by the Frisch-Waugh-Lovell Theorem, it follows that

:̂ρ+,Full(h) =
yCovK(XdY⊥X ,∆,:Z

d ,Xd [Ud −Ū ]⊥X ,∆,:Z)[h+]
xVarK(Xd [Ud −Ū ]⊥X ,∆,:Z)[h+]

:̂ρ−,Full(h) =
yCovK((1−Xd)Y

⊥X ,∆,:Z
d ,(1−Xd)[Ud −Ū ]⊥X ,∆,:Z)[h−]

xVarK((1−Xd)[Ud −Ū ]⊥X ,∆,:Z)[h−]

where

Y⊥X ,∆,:Z
d = Yd − (1−Xd)rp(∆d)

′ :̂βY,−(h)−Xdrp(∆d)
′ :̂βY,+(h)− :Z′

d :̂γp,Full(h)

and

[Ud −Ū ]⊥X ,∆,:Z = [Ud −Ū ]⊥∆,:Z − :̂τU−Ū ,p,+(h)Xd − :̂τU−Ū ,p,−(h)(1−Xd)

Now

:̂τY,Res,p,+(h)− :̂τY,Full,p,+(h) = :̂ρ+,Full(h):̂τU−Ū ,p,+(h)

=

˜

yCovK(XdY⊥X ,∆,:Z
d ,Xd [Ud −Ū ]⊥X ,∆,:Z)[h+]

xVarK(Xd [Ud −Ū ]⊥X ,∆,:Z)[h+]

¸˜

yCovK(Xd [Ud −Ū ]⊥∆,:Z,Xd)[h+]
xVarK(Xd)[h+]

¸

=

¨

˝

yCorrK(XdY⊥X ,∆,:Z
d ,Xd [Ud −Ū ]⊥X ,∆,:Z)[h+]

b

xVarK(XdY⊥X ,∆,:Z
d )[h+]

b

xVarK(Xd [Ud −Ū ]⊥X ,∆,:Z)[h+]

˛

‚

×

¨

˝

yCorrK(Xd [Ud −Ū ]⊥∆,:Z,Xd)[h+]
b

xVarK(Xd [Ud −Ū ]⊥∆,:Z)[h+]
b

xVarK(Xd)[h+]

˛

‚

Now observe that
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xVarK(Xd [Ud −Ū ]⊥X ,∆,:Z)[h+]
xVarK(Xd [Ud −Ū ]⊥∆,:Z)[h+]

= 1− :̂τU−Ū ,p,+(h)
xVarK(Xd)[h+]

xVarK(Xd [Ud −Ū ]⊥∆,:Z)[h+]

= 1−
´

yCorrK(Xd [Ud −Ū ]⊥∆,:Z,Xd)[h+]
¯2

Therefore

:̂τY,Res,p,+(h)− :̂τY,Full,p,+(h) =

g

f

f

e

xVarK(XdY⊥X ,∆,:Z
d )[h+]

xVarK(Xd)[h+]

¨

˝

RY∼U−Ū |Z,∆,X ,+[h+]RU−Ū∼X |Z,∆,+[h+]
b

1−R2
U−Ū∼X |Z,∆,+[h+]

˛

‚

where

RY∼U−Ū |Z,∆,X ,+[h] = yCorrK(XdY⊥X ,∆,:Z
d ,Xd [Ud −Ū ]⊥X ,∆,:Z)[h]

RU−Ū∼X |Z,∆,+[h] = yCorrK(Xd [Ud −Ū ]⊥∆,:Z,Xd)[h]

Ultimately, previous results mean that the bias caused by leaving out a potential confounder depends on

two unknown quantities: RY∼U−Ū |Z,∆,X ,+[h] and RY∼U−Ū |Z,∆,X ,+[h]. To simplify notation, let

:̂τY,Res,p,+(h)− :̂τY,Full,p,+(h) = Ĉ+[h+]BF+[h+]

where

BF+(h) =

¨

˝

RY∼U−Ū |Z,∆,X ,+[h]RU−Ū∼X |Z,∆,+[h]
b

1−R2
U−Ū∼X |Z,∆,+[h]

˛

‚

and

Ĉ+[h] =

g

f

f

e

xVarK(XdY⊥X ,∆,:Z
d )[h]

xVarK(Xd)[h]

Further note that correlations are symmetric, which means that

RU−Ū∼X |Z,∆,+[h] = yCorrK(Xd [Ud −Ū ]⊥∆,:Z,Xd)[h] = yCorrK(Xd ,Xd [Ud −Ū ]⊥∆,:Z)[h] = RX∼U−Ū |Z,∆,+[h]

Mimicking this analysis in the left-side yields
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:̂τY,Res,p,−(h)− :̂τY,Full,p,−(h) =

g

f

f

e

xVarK((1−Xd)Y
⊥X ,∆,:Z
d )[h−]

xVarK(1−Xd)[h−]

¨

˝

RY∼U−Ū |Z,∆,X ,−[h−]RU−Ū∼X |Z,∆,−[h−]
b

1−R2
U−Ū∼X |Z,∆,−[h−]

˛

‚

where

RY∼U−Ū |Z,∆,X ,−[h] = yCorrK((1−Xd)Y
⊥X ,∆,:Z
d ,(1−Xd)[Ud −Ū ]⊥X ,∆,:Z)[h]

RU−Ū∼X |Z,∆,−[h] =− yCorrK((1−Xd)[Ud −Ū ]⊥∆,:Z,Xd)[h]

Analogously, by symmetry,

:̂τY,Res,p,−(h)− :̂τY,Full,p,−(h) = Ĉ−[h−]BF−(h−)

where

BF−(h) =

¨

˝

RY∼U−Ū |Z,∆,X ,−[h]RU−Ū∼X |Z,∆,−[h]
b

1−R2
U−Ū∼X |Z,∆,−[h]

˛

‚

and

Ĉ−[h] =

g

f

f

e

xVarK((1−Xd)Y
⊥X ,∆,:Z
d )[h]

xVarK(1−Xd)[h]

As a result, the result can be succinctly stated as

yBias(h) =−
`

Ĉ+[h+]BF+(h+)+ Ĉ−[h−]BF−(h−)
˘

B.12 Bounding estimated effect using observed covariates

Let Zidl be the benchmark characteristic and denote by Z−l
id the observed trait vector excluding attribute Zidl .

Now let

κ
+
X :=

R2
X∼U−Ū |Z−l ,∆,+

[h+]

R2
X∼Zidl−Z̄l |Z−l ,∆,+

[h+]
; κ

+
Y :=

R2
Y∼U−Ū |Z−l ,∆,X ,+

[h+]

R2
Y∼Zidl−Z̄l |Z−l ,∆,X ,+

[h+]

Following Appendix B.2 of Cinelli and Hazlett (2020b), it is possible to use the recursive nature of

correlations to bound the |BF+| using κ
+
X ,κ+

Y and some estimated quantities in the data. In particular,
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|RX∼U−Ū |Z,∆,+[h+]|=
b

κ
+
X |ΛX∼Zidl−Z̄l |Z−l ,∆,+[h+]|

|RX∼U−Ū |Z,∆,+[h+]| ≤ Ξ(κ+
X ,κ+

Y )|ΛY∼Zidl−Z̄l |Z−l ,∆,X ,+[h+]|

where

•

ΛX∼Zidl−Z̄l |Z−l ,∆,+[h+] =
RX∼Zidl−Z̄l |Z−l ,∆,+[h+]

b

1−R2
X∼Zidl−Z̄l |Z−l ,∆,+

[h+]

•

ΛY∼Zidl−Z̄l |Z−l ,∆,X ,+[h+] =
RY∼Zidl−Z̄l |Z−l ,∆,X ,+[h+]

b

1−R2
Y∼Zidl−Z̄l |Z−l ,∆,X ,+

[h+]

•

Λκ
+
X
[h+] =

b

κ
+
X RX∼Zidl−Z̄l |Z−l ,∆,+[h+]

b

1−κ
+
X R2

X∼Zidl−Z̄l |Z−l ,∆,+
[h+]

•

Ξ
+(κ+

X ,κ+
Y ) =

b

κ
+
Y + |Λκ

+
X
[h+]×ΛX∼Zidl−Z̄l |Z−l ,∆,+[h+]|

b

1−Λ2
κ
+
X
[h+]×Λ2

X∼Zidl−Z̄l |Z−l ,∆,+
[h+]

are all known quantities. Consequently,

|BF+|≤ Ξ
+(κ+

X ,κ+
Y )

ˇ

ˇ

ˇ
ΛY∼Zidl−Z̄l |Z−l ,∆,X ,+[h+]

ˇ

ˇ

ˇ

¨

˝

b

κ
+
X |ΛX∼Zidl−Z̄l |Z−l ,∆,+[h+]|

b

1−κ
+
X Λ2

X∼Zidl−Z̄l |Z−l ,∆,+
[h+]

˛

‚= BF+
(κ+

X ,κ+
Y )[h+]

and this bound is tight, which means it is the smallest possible bound for this quantity.

Moreover since R2
X∼U−Ū |Z,∆,+[h+]≤ 1, it follows that

0 ≤ κ
+
X ≤ 1/Λ

2
X∼Zidl−Z̄l |Z−l ,∆,+[h+]|

Likewise, by considering

κ
−
X :=

R2
X∼U−Ū |Z−l ,∆,−[h−]

R2
X∼Zidl−Z̄l |Z−l ,∆,−[h−]

; κ
−
Y :=

R2
Y∼U−Ū |Z−l ,∆,X ,−[h−]

R2
Y∼Zidl−Z̄l |Z−l ,∆,X ,−[h−]

It is possible to bound |BF−| as follows:
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|BF−|≤ Ξ(κ−
X ,κ−

Y )
ˇ

ˇ

ˇ
ΛY∼Zidl−Z̄l |Z−l ,∆,X ,−[h−]

ˇ

ˇ

ˇ

¨

˝

b

κ
−
X |ΛX∼Zidl−Z̄l |Z−l ,∆,−[h−]|

b

1−κ
−
X Λ2

X∼Zidl−Z̄l |Z−l ,∆,−[h−]

˛

‚= BF−
(κ−

X ,κ−
Y )[h−]

where the quantities indexed with − are defined the same as their conterparts with +. Similarly, we

know that

0 ≤ κ
−
X ≤ 1/Λ

2
X∼Zidl−Z̄l |Z−l ,∆,−[h−]

Now, from the triangular inequality

|yBias(h)|≤ Ĉ+[h+]|BF+(h+)|+Ĉ−[h−]|BF−(h−)|

where equality is achieved in the likely scenario where BF+(h+) and BF−(h−) have the same sign22. In

conclusion

|yBias(h)|≤ Ĉ+[h+]×BF+
(κ+

X ,κ+
Y )[h+]+ Ĉ−[h−]×BF−

(κ−
X ,κ−

Y )[h−] = Bias(κ+
X ,κ+

Y ,κ−
X ,κ−

Y )

B.13 Extensions to the sensitivity analysis.

B.13.1 Multiple omitted confounders

Section 4.1 assumes that there only exists a single omitted confounder. I will show that this simplified frame-

work covers also setting with multiple confounders. Let Ud be a vector of unobserved multiple confounders.

In this scenario, the complete model would be

Yd = :̂αY,Full(h)+Xd :̂τY,Full(h)+ :̂β ′
Y−,Full(h)rp(∆id)+Xd

:̂β ′
Y+,Full(h)rp(∆id)+

Xd :Z′
d :̂γ+,Full(h)+(1−Xd):Z′

d :̂γ−,Full(h)+Xd :U′
d :̂ρ+(h)+(1−Xd):U

′
d :̂ρ−(h)+ ε̂Full(h)

Now consider the single variable U∗
d = (Xd :̂ρ+(h)+(1−Xd) :̂ρ−)

′Ud . Then the model

Yd = :̂αY,Full(h)+Xd :̂τY,Full(h)+ :̂β ′
Y−,Full(h)rp(∆id)+Xd

:̂β ′
Y+,Full(h)rp(∆id)+

Xd :Z′
d :̂γ+,Full(h)+(1−Xd):Z′

d :̂γ−,Full(h)+Xd(U∗
d −Ū∗)+(1−Xd)(U∗

d −Ū∗)

yields the same :̂τY,Full(h). However, as Cinelli and Hazlett (2020b) notes,

22This would be the case if the unobserved trait correlates differently with the outcome depending on the politician’s type.
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|RU−Ū∼X |Z,∆,+[h]| ≤ |RU∗−Ū∗∼X |Z,∆,+[h]|

|RU−Ū∼X |Z,∆,−[h]| ≤ |RU∗−Ū∗∼X |Z,∆,−[h]|

so that the bias that is generated by omitting Ud must be less than equal than omitting U∗
d . Thus, by

assuming the existence of a single unobserved feature U∗
d , we are still providing valid upper bounds in the

presence of more than one omitted confounder.

B.13.2 Benchmarking with a group of covariates

To generalize the bounds to multiple covariates, consider Z(l1,···,lr) = {Zl1 , · · · ,Zlr}, where 1 ≤ l1 < l2 < · · ·<
lr ≤ m be a subset of Z of size r. This set can be as big as to contain all observed variables (in which case

r = m), or as small as to contain a single variable (r = 1). Denote by Z−(l1,···,lr) the set containing all the

remaining traits not contained in Z(l1,···,lr). Finally, denote by :Z(l1,···,lr) = {Zl1 − Z̄l1 , · · · ,Zlr − Z̄lr}.

Let

κ
+
X :=

R2
X∼U−Ū |Z−(l1,···,lr),∆,+

[h+]

R2
X∼:Z(l1 ,···,lr)|Z−(l1 ,···,lr),∆,+

[h+]
; κ

+
Y :=

R2
Y∼U−Ū |Z−(l1 ,···,lr),∆,X ,+

[h+]

R2
Y∼:Z(l1 ,···,lr)|Z−(l1 ,···,lr),∆,X ,+

[h+]

As in the original case, we compare how much more of the variance of the treatment or the outcome

variable does the omitted confounder explain relative to the whole set of covariates (after controlling for

the left-out traits). This makes it possible to produce the same bounds as in the single covariate case,

simply replacing RX∼Zidl−Z̄l |Z−l ,∆,+[h+] with RX∼:Z(l1 ,···,lr)|Z−(l1 ,···,lr),∆,+
[h+], and RY∼Zidl−Z̄l |Z−l ,∆,X ,+[h+] with

RY∼:Z(l1 ,···,lr)|Z−(l1,···,lr),∆,X ,+[h+].

Furthermore, one can use the recursive definition of partial correlations to calculate these quantities. For

instance,

1−R2
X∼:Z(l1 ,···,lr)|Z−(l1 ,···,lr),∆,+

[h+] = (1−R2
X∼Zl1−Z̄l1 |Z−(l1)

,∆,+[h+])

× (1−R2
X∼Zl2−Z̄l2 |Z−(l1 ,l2)

,∆,+[h+])

× (1−R2
X∼Zl3−Z̄l3 |Z−(l1 ,l2,l3)

,∆,+[h+])

×·· ·

× (1−R2
X∼Zlr−Z̄lr |Z−(l1 ,···,lr),∆,+

[h+])

The same applies to the quantities indexed by “ - ”. The formal proof of this equivalence is available in

Cinelli and Hazlett (2020b, p.8).
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C Appendix - Extensions and additional comments on the sensitivity analy-
sis.

In this Appendix, I discuss additional procedures and perspectives to the sensitivity analysis described in

Section 4.

C.1 Validity of the bounding exercise

In general terms, the bounding procedure enables to assert for any given tuple (κ+
X ,κ+

Y ,κ−
X ,κ−

Y ) that

:̂τY,Res −Bias(κ+
X ,κ+

Y ,κ−
X ,κ−

Y )≤ :̂τY,Full ≈ τPCRD ≤ :̂τY,Res +Bias(κ+
X ,κ+

Y ,κ−
X ,κ−

Y )

Although a general result, the multiplicity of dimensions makes interpretation difficult. Because of this,

Cinelli and Hazlett (2020a), advocate reducing to a single dimension by assuming that κ
+
X = κ

+
Y = κ

−
X =

κ
−
Y = κ .

While this equality is likely false in any empiric application, it nevertheless gives valid bounds to the

bias. However, to achieve this, we must make precise what being “κ times as strong” as the benchmark

means. Rigorously, we can define κ as the strongest relative strength in any of the dimensions studied.

More precisely, let (κ+
X ,κ+

Y ,κ−
X ,κ−

Y ) be the true relative strengths define

κ = max{κ
+
X ,κ+

Y ,κ−
X ,κ−

Y }

Since Bias(·) is increasing on all of its arguments, we have

Bias(κ,κ,κ,κ)≤ Bias(κ,κ,κ,κ)

so that

:̂τY,Res −Bias(κ,κ,κ,κ)≤ :̂τY,Full ≈ τPCRD ≤ :̂τY,Res +Bias(κ,κ,κ,κ)

While valid, these bounds may be excessively large, making sensitivity bounds overly conservative.

However, without additional information about the vector (κ+
X ,κ+

Y ,κ−
X ,κ−

Y ), this approach furnishes valid

bounds irrespective of the interrelation of these variables.

C.2 Assessing relative strength with post-treatment bias.

The key to the bounding procedure presented in Section 4.2 is to benchmark an omitted confounder’s

strength via its relative strength with respect to some observed pre-determined variables (consider a sin-

gle benchmark Zid for simplicity). More precisely, a researcher could be able to make sense of the quantities

κ
±
X and κ

±
Y defined as
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κ
+
X :=

˜

R+
Xd∼Ud−Ū

R+
Xd∼Zd−Z̄

¸2

; κ
+
Y :=

˜

R+
Yd∼Ud−Ū |Xd

R+
Yd∼Zd−Z̄|Xd

¸2

These quantities have a clear interpretation. For instance, κ
+
X represents how much more of the variance

of Xd near the threshold does Ud −Ū explain relative to the benchmark difference Zd − Z̄. Alternatively,

κ
+
X ≈ Corr2(Xd ,XdUd |∆d = 0)

Corr2(Xd ,XdZd |∆d = 0)

Similarly, κ
+
Y expresses a similar ratio but accounting for how much Ud −Ū explains the outcome at the

right of the threshold, relative to Zd − Z̄. Therefore, it can be expressed as

κ
+
Y ≈ Corr2(XdYd ,XdUd |∆d = 0)

Corr2(XdYd ,XdZd |∆d = 0)

However, notice that conditioning by a close race can distort these ratios relative to the population ones

given by:

κ̃
+
X ≈ Corr2(Xd ,XdUd)

Corr2(Xd ,XdZd)
; κ̃

+
Y ≈ Corr2(XdYd ,XdUd)

Corr2(XdYd ,XdZd)

The problem with this is that while expert knowledge can provide a good sense of κ̃
±
X and κ̃

±
Y , the bias

induced by conditioning can make the quantities we need to reason about, κ
±
X and κ

±
Y , very different. To

illustrate this, I will show how conditioning on a close race affects the ratio κ
+
X /κ̃

+
X . The intuition carries

over to κ
−
X and κ

±
Y .

Suppose Ud is relevant for determining both Yd and ∆d , but Zd is only relevant for Yd . In this case,

conditioning on ∆d = 0 does not induce compensating differentials on Zd . Therefore,

Corr2(XdYd ,XdZd |∆d = 0) = Corr2(XdYd ,XdZd)

and

κ
+
X

κ̃
+
X

=

ˆ

Corr(Xd ,XdUd |∆d = 0)
Corr(Xd ,XdUd)

˙2

Thus, the question of whether κ̃
+
X is greater or lower than our reference point κ

+
X in this example can be

reduced to evaluating whether conditioning in a close race accentuates the correlation of Ud with Xd . This

occurs when differences in unobservables are accentuated by focusing on close elections. Since this is most

likely the case, this example would suggest that we should always expect κ̃
+
X > κ

+
X , meaning estimates will

be even more sensible than we think.

Nonetheless, this pattern does not always hold in a more realistic scenario. For instance, if we allow Zd

to influence ∆d . In this case,
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κ
+
X

κ̃
+
X

=

ˆ

Corr(Xd ,XdUd |∆d = 0)
Corr(Xd ,XdUd)

Corr(Xd ,XdZd)

Corr(Xd ,XdZd |∆d = 0)

˙2

Now, the question is whether the benchmark attribute or the unobservable was more distorted by condi-

tioning on a close election. In other words, one must determine whether

Corr(Xd ,XdUd |∆d = 0)
Corr(Xd ,XdUd)

?
>

Corr(Xd ,XdZd |∆d = 0)
Corr(Xd ,XdZd)

In other words, if the unobservables were more distorted by conditioning than the benchmark character-

istic, then κ
+
X > κ̃

+
X . Conversely, if the benchmark characteristic was more affected than the unobservables,

then κ̃
+
X > κ

+
X . Moreover, it could even be the case where κ̃

+
X = κ

+
X despite the existence of compensating

differentials.

While not much can be done about how conditioning affects the unobserved variable, a researcher still

has the power to choose an appropriate benchmark. Specifically, By selecting a benchmark that has been

largely affected by conditioning, the ratio κ
+
X /κ̃

+
X is forced to be smaller. This brings the global benchmarks

closer to the conditional ones, even when distortions in the unobservable are potentially as large.
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