
An object-oriented tool for modeling Phase-Type distributions

and a computational benchmarking of fitting algorithms

Trabajo de Tesis
presentado al

Departamento de Ingenieŕıa Industrial

por

Juan Fernando Pérez Bernal

Asesor: Germán Riaño, Ph.D

Para optar al t́ıtulo de
Maestŕıa en Ingenieŕıa Industrial

Ingenieŕıa Industrial
Universidad de Los Andes

Mayo 2006

An object-oriented tool for modeling Phase-Type distributions

and a computational benchmarking of fitting algorithms

Aprobado por:

Germán Riaño, Ph.D, Asesor

Maria Elsa Correal, Ph.D

René Meziat, Ph.D

Fecha de Aprobación

To my parents. To Adriana. To Julian.

iii

Acknowledgements

I want to thank Professor Riaño for his work and advice in the development of this work.

iv

Contents

Dedication iii

Acknowledgements iv

List de Tables vii

List of Figures ix

Introduction x

I Phase-Type Distributions 1

1.1 Continuous Phase-Type Distributions . 1

1.2 Discrete Phase-Type Distributions . 2

1.3 Closure Properties . 3

1.4 Further Closure Properties for Continuous Distributions 5

1.5 Denseness Property . 6

1.6 Phase-Type Random Variates Generation . 6

1.7 Fitting Algorithms . 6

1.7.1 Moment Matching Algorithms . 7

1.7.2 Maximum Likelihood Algorithms . 8

1.7.3 Other approaches . 8

II jPhase: the Object-Oriented Framework 10

2.1 General Structure . 10

2.2 Interfaces . 11

2.3 Abstract Classes . 13

2.4 Concrete Classes . 14

2.5 Examples . 15

III jPhaseGenerator: the variates generator module 18

3.1 PhaseGenerator Interface . 18

3.2 Concrete Classes . 19

v

IV jPhaseFit: the Fitting Module 21

4.1 Abstract Classes . 21

4.2 Concrete Classes: Maximum Likelihood Algorithms 22

4.2.1 General Phase-Type Distribution EM Algorithm [1] 22

4.2.2 HyperExponential Distribution EM Algorithm [2] 23

4.2.3 HyperErlang Distribution EM Algorithm [3] 24

4.3 Concrete Classes: Moment Matching Algorithms 25

4.3.1 Acyclic Continuous order-2 Distributions [4] 25

4.3.2 ErlangCoxian Distributions[5] . 25

4.3.3 Acyclic Continuous Distributions [6] . 26

V Fitting Algorithms Benchmarking 27

5.1 Methodology . 27

5.2 Selected Traces . 28

5.3 Results . 30

5.3.1 Results on Matching Moment Algorithms 30

5.3.2 Results on Maximum Likelihood Algorithms 32

5.3.3 Further Results on Maximum Likelihood Algorithm 34

VI Conclusions 38

Appendix A — Results of Fitting Algorithms 40

References 50

vi

List of Tables

1 Some methods for the PhaseVar interface . 12

2 Some methods for the DiscPhaseVar and ContPhaseVar interface 13

3 Some further closure methods for the ContPhaseVar interface 13

4 Generated Traces . 29

5 Results of Moment Matching Algorithms for Weibull Distributions 40

6 Results of Moment Matching Algorithms for Lognormal Distributions 40

7 Results of Moment Matching Algorithms for Uniform Distributions 41

8 Results of Moment Matching Algorithms for Expo* Distributions 41

9 Results of Moment Matching Algorithms for Pareto Distributions 41

10 Results of Moment Matching Algorithms for Real Data Traces 41

11 Results of Maximum Likelihood Algorithms with 2 phases for Weibull Distributions 42

12 Results of Maximum Likelihood Algorithms with 2 phases for Lognormal Distri-
butions . 43

13 Results of Maximum Likelihood Algorithms with 2 phases for Uniform Distributions 43

14 Results of Maximum Likelihood Algorithms with 2 phases for Expo* Distributions 43

15 Results of Maximum Likelihood Algorithms with 2 phases for Pareto Distributions 44

16 Results of Maximum Likelihood Algorithms with 2 phases for Real Data Traces . 44

17 Results of Maximum Likelihood Algorithms with 4 phases for Weibull Distributions 45

18 Results of Maximum Likelihood Algorithms with 4 phases for Lognormal Distri-
butions . 45

19 Results of Maximum Likelihood Algorithms with 4 phases for Uniform Distributions 46

20 Results of Maximum Likelihood Algorithms with 4 phases for Expo* Distributions 46

21 Results of Maximum Likelihood Algorithms with 4 phases for Pareto Distributions 46

22 Results of Maximum Likelihood Algorithms with 4 phases for Real Data Traces . 47

23 Results of Maximum Likelihood Algorithms with 8 phases for Weibull Distributions 47

24 Results of Maximum Likelihood Algorithms with 8 phases for Lognormal Distri-
butions . 48

25 Results of Maximum Likelihood Algorithms with 8 phases for Uniform Distributions 48

vii

26 Results of Maximum Likelihood Algorithms with 8 phases for Expo* Distributions 48

27 Results of Maximum Likelihood Algorithms with 8 phases for Pareto Distributions 49

28 Results of Maximum Likelihood Algorithms with 8 phases for Real Data Traces . 49

viii

List of Figures

1 Simple jPhase Package Class Diagram . 11

2 jPhase: Example 1 . 15

3 jPhase: Result for Example 1 . 15

4 jPhase: Example 2 . 16

5 jPhase: Result for Example 2 . 16

6 jPhase: Graphic User Interface . 17

7 Simple jPhaseGenerator Package Class Diagram 18

8 Simple jPhaseFit Package Class Diagram . 21

9 Loglikelihood of Generated Traces for Moment Methods 30

10 Loglikelihood of Real Traces for Moment Methods 30

11 Number of phases for Moment Methods . 31

12 Area difference in CDF for Moment Methods . 31

13 Loglikelihood of Generated Traces for Maximum Likelihood Methods over 4-
phases distributions . 32

14 Loglikelihood of Real Traces for Maximum Likelihood Methods over 4-phases
distributions . 33

15 Absolute Error on Second Moment for Maximum Likelihood Methods over 4-
phases distributions . 33

16 Absolute Error on Third Moment for Maximum Likelihood Methods over 4-phases
distributions . 34

17 Loglikelihood of Generated Traces for the EMHyperExpo Method 34

18 Loglikelihood of Real Traces for the EMHyperExpo Method 35

19 Loglikelihood of Generated Traces for the EMPhase Method 35

20 Loglikelihood of Real Traces for the EMPhase Method 36

21 Loglikelihood of Generated Traces for the EMHyperErlang Method 37

22 Loglikelihood of Real Traces for the EMHyperErlang Method 37

ix

Introduction

Phase-Type distributions are a general class of probability distributions that general-

ize the well known exponential distribution through the composition of exponential phases [7].

They were first introduced by Marcel Neuts [8], and have the important property of a ratio-

nal Laplace transform, which makes them a subset of the distributions presented by David

R. Cox 1 [9]. In this case, the extension is made as a generalization of the method of phases

proposed by Erlang, and has the relevant feature of numerical tractability, as noted by Neuts [8].

The Phase-Type distributions can be defined as the time until absorption in an irreducible

Markov chain with one absorbing state and all others transient. A particular realization of a

Phase-Type random variable implies the random selection of an initial state, according to the

initial distribution, and then jump to any other state, according to transition probability matrix

(discrete case) or the generator matrix (continuous case). The process terminates when the ab-

sorbing state is reached and the value of the realization is the sum of the total time spent in all

the states. Therefore, the parameters of a Phase-Type distribution are the initial probability vec-

tor and the transition matrix of a Markov Chain, which completely determine the whole process.

A relevant property of the Phase-Type distributions is its denseness, which implies that any

behavior of a random variable with support in [0,∞) can be approximated through a distribu-

tion of this family [10]. As these distributions can be used as input of markovian models of real

systems, this extension has several consequences in applied probability, extending the modeling

capabilities to general distributions. However, an important problem to solve is the fitting of

1Even though the distributions proposed by Cox admit complex probabilities, the Coxian distributions treated
in this documents are all related to real probabilities

x

the distribution parameters, which are large in number and have a non-unique representation

[11]. Different approaches have been proposed to find the set of parameters of a Phase-Type

distribution, including maximum likelihood methods and moment matching techniques.

In this thesis, an object-oriented tool (JPhase) is developed to model Phase-Type distri-

butions in an computational framework, allowing the manipulation of these distributions as

computational objects. The developed structure induces a formal representation of a Phase-

type distribution and a set of properties that it should have. These properties are related to the

computation of the probability density or mass function, the cumulative distribution function

and the k-th moment, among others. Another important issue is the implementation of closure

properties, which are the result of operations on the set of Phase-Type distributions.

This tool also includes two complementary packages: the first one (JPhaseGenerator), es-

tablishes the structure for any Phase-Type random variates generator, and implements the

algorithms developed by Neuts and Pagano [12] for the discrete and the continuous cases. The

second one (JPhaseFitter) has a set of classes to fit the parameters of a Phase-Type distribution

from a data set, through the implementation of some recently developed algorithms. These

classes are included in a computational structure that allows the characterization of the desired

input and output of any fitting algorithm, in terms of computational objects.

With this structure, any person with a basic knowledge in object-oriented programming can

use Phase-Type distributions in the analysis of a system, through the fitting of a real data set

to a Phase-Type distribution and computation of some performance measures with the help

of the procedures and utilities implemented. This can be seen as an alternative to simulation

approaches, because it’s possible to take some data, build a probabilistic model and obtain

performance measures though matrix operations, avoiding some problems of simulation models,

such as large replications and correlated results. Nevertheless, a graphic user interface was de-

veloped in order to allows the interaction with the tool through the familiar windows, buttons

and menu bars. This interface allows an easier interaction with the user, and can be used to

xi

make an interesting analysis of a real system, including data fit, closure properties computation,

and graphical presentation of the probability density function and the cumulative probability

function.

As it was stated above, the parameter fitting is not an easy task and has received the atten-

tion of different researchers in the last years [3]. The wide variety of efforts makes interesting the

evaluation of the algorithms developed, which is the final contribution of this work. The evalua-

tion realized is related to the effective moments and shape fitting, and also to the computational

efficiency of the algorithms. This evaluation reveals the comparative behavior of the algorithms,

and it can be useful to people who find interesting the use of Phase-Type distributions in the

performance analysis of real systems, but who are not willing to read the whole body of research

developed around the fitting algorithms.

This document is organized as follows: in the first section the basic properties of Phase-

Type distributions are presented, as well as an overview of the parameter fitting methods and

the random variates generation algorithms. In section 2, 3 and 4, the developed computational

structure is presented: the principal, the generator and the fitter packages. In the fifth section,

the benchmark of fitting algorithms is presented, including the methodology and the results.

Finally, some conclusions are stated in the last section.

xii

Chapter I

Phase-Type Distributions

In this section, the definition and basic properties of Phase-Type distributions are stated, ac-

cording to the treatment presented in [8] y [13]. Therefore, the proofs of the definitions in this

section are not included and the interested reader can find them in the given references.

1.1 Continuous Phase-Type Distributions

A Continuous Phase-Type distribution can be defined as the time until absorption in a Contin-

uous Markov Chain, with one absorbing state and all others transient. The generator matrix of

that process can be written as:

Q =

[

0 0

a A

]

,

where the first entry in the state space represents the absorbing state. As the sum of the elements

on each row must be equal to zero, a is determined by:

a = −A1,

where 1 is a vector of ones. In order to completely determine the process, the initial probability

distribution is defined and can be partitioned in the same way of the generator matrix:

[

α0 α

]

,

where α0 is the probability of starting the process in the state 0, and the sum of all the compo-

nents in the vector must be equal to 1. Therefore, α0 is determined by the following relationship:

α0 = 1 − α1.

In this way, a Continuous Phase-Type Distribution is completely determined by the para-

meters (α, A), and its probability distribution function is defined as:

F (x) = 1 − αeAx1, x ≥ 0,

1

which has a clear connection to the well known exponential distribution. Furthermore, if there

is just one transient phase with associate rate λ and it is selected with probability one, then

the distribution is exactly the exponential case. From the previous expression, the probability

density function can be computed as:

f(x) = αeAxa, x > 0.

And similarly, the Laplace-Stieltjes transform of f(·), is given by:

f(s) = α0 + α(sI − A)−1a, Re(s) ≥ 0,

from which, the non-centered moments can be calculated as:

E[Xk] = k!α(−A−1)k1, k ≥ 1.

1.2 Discrete Phase-Type Distributions

A Discrete Phase-Type distribution can be seen as an analogous case to the continuous distri-

bution. In this case, the distribution can be defined as the number of steps until absorption

in a Discrete Markov Chain, with one absorbing state and all other transient. The transition

probability matrix of that process may be defined as:

P =

[

1 0

a A

]

,

where the first row in the matrix represents the absorbing state. As the sum of the elements

in every row of the matrix must equal to one (in order to be a probability mass function), t is

determined by:

a = 1 − A1.

Similarly, the initial probability distribution is defined as:

[

α0 α

]

,

where α0 = 1 − α1 is the probability of starting the process in the absorbing state, i.e. the

number of steps in that case would be equal to zero. As before, the discrete distribution is

completely determined by the parameters (α, T) and its probability mass function is defined as:

P (X = k) =







α0 , k = 0

αAka , k ≥ 1

2

This last definition makes natural the definition of the cumulative probability function of the

discrete Phase-Type variable:

P (X ≤ k) = 1 − αAk1, k ≥ 0.

Also, the moment generating function, or Z-transform, can be calculated from P (·):

G(z) = α0 + zα(I − zA)−1a, |z| ≤ 1.

from which, the factorial moments of the distribution can be calculated as:

E[X(X − 1)(X − 2) . . . (X − k + 1)] = k!α(I − A)−kAk−11, k ≥ 1.

1.3 Closure Properties

An important issue of Phase-Type distributions is that they are closed under some operations,

which can be useful in the analysis of some systems. The following closure properties are valid

for both discrete and continuous distributions.

1. Convolution of a finite number of Phase-Type distributions

If X ∼ PH(α, T) and Y ∼ PH(β, S), with n and m phases respectively, then the convo-

lution X + Y ∼ PH(γ, C) has m + n phases, with

γ = [α, α0β] and C =

[

T tβ

0 S

]

.

2. Convex mixture of a finite number of Phase-Type distributions

If X ∼ PH(α, T) and Y ∼ PH(β, S), with n and m phases respectively, and distribution

functions F (·) and G(·). Then the convex mixture θF (·) + (1 − θ)G(·), with 0 ≤ θ ≤ 1,

has representation PH(γ, C) with m + n phases, where

γ = [θα, (1 − θ)β] and C =

[

T 0

0 S

]

.

3. Convolution of a discrete Phase-Type number of Phase-Type distributions

If Xi are i.i.d. continuous Phase-Type distribution with representation PH(α, T) and

N a discrete Phase-Type distribution with representation PH(β, S), then the mixture

G(·) =
∑N

k=0 Xi is PH(γ, C), with

γ = α ⊗ β and C = T ⊗ I + tα ⊗ S.

3

The function ⊗ denotes the Kronecker product and ⊕ the Kronecker sum 1 .

• Convolution of a geometric number of Phase-Type distributions

As the geometric distribution is a particular case of Discrete Phase-Type distributions,

this property also holds for the geometric case. If Xi are i.i.d. continuous Phase-

Type distribution with representation PH(α, T) and N is geometric distributions

with parameter p, then the mixture G(·) =
∑N

k=0 Xi is PH(γ, C), with

γ = α and C = T + (1 − p)tα.

4. The minimum of a set of Phase-Type distributions

If X ∼ PH(α, T) and Y ∼ PH(β, S), with n and m phases respectively, then min(X, Y) ∼

PH(γ, C) with mn phases and

γ = α ⊗ β.

In this case, the matrix C has a different definition if the process is discrete or continuous.

In the discrete case, the resulting probability transition matrix is given by

C = T ⊗ S.

For the continuous case, the generator matrix is given by

C = T ⊕ S.

5. The maximum of a set of Phase-Type distributions

If X ∼ PH(α, T) and Y ∼ PH(β, S), with n and m phases respectively, then max(X, Y) ∼

PH(γ, C) with mn + n + m phases and

γ = [α ⊗ β, β0α, α0β] and C =









T ⊕ S I ⊗ s t ⊗ I

0 T 0

0 0 S









.

1The Kronecker product of matrices A and B is defined as

A ⊗ B =











a11B a12B . . . a1nB

a21B a22B . . . a2nB

...
...

. . .
...

am1B am2B . . . amnB











And the Kronecker sum of matrices A and B is defined as A ⊕ B = A ⊗ I + I ⊗ B

4

1.4 Further Closure Properties for Continuous Distributions

There are some other important closure properties that only apply for the case of Continuous

Phase-Type distributions, which are listed below.

1. Waiting time in a M/PH/1 queue

If X ∼ PH(α, T) is the service time distribution in a M/G/1 queue, then the distribution

of the waiting time W (·) is PH(γ, C), with

γ = (1 − ρ)π and C = T + ρtπ,

where ρ = λm is the traffic coefficient, λ is the arrival rate and m is the expected value of

the service time. π is the stationary probability vector of T+tα, i.e. π = (αT−1e)αT−1.

2. Residual time distribution

If X ∼ PH(α, T), then the residual time distribution

G(x) = P(X − τ ≤ x|X > τ)

has representation PH(γ, T), with

γ =
1

1 − F (τ)
αeAτ .

3. Equilibrium Residual time distribution

If X ∼ PH(α, T), then the equilibrium residual time distribution

G(x) =
1

E[X]

∫ x

0
(1 − F (u))du,

has representation PH(π, T), where π has the same meaning as state above.

4. Termination time of a Phase-Type process with Phase-Type failures [14]

Consider a process where the service time is determined by Phase-Type distribution with

m phases and representation PH(α, T), and it is subject to failures that occur according to

a Poisson process with rate λ. If the duration of the failure is PH(β, S) with n phases, then

the completion time has distribution G(·) with representation PH(γ, C). Two different

cases must be differentiated: if the service must be restarted after the failure, or if the

task can begin from the point where it was left before the failure. In the first case, the

resulting distribution has m + n phases and

γ = [α,0] and C =

[

T − µI µeβ

sα S

]

.

In the second case, the representation has m + mn phases and

5

γ = [α,0] and C =

[

T − µI µI ⊗ β

I ⊗ s I ⊗ S

]

.

1.5 Denseness Property

The Continuous and Discrete Phase-Type distributions have the important property of being

dense in [0,∞) and the non-negative integers, respectively 2 . This implies that any distrib-

ution with support on those sets can be approximated by a Phase-Type distribution with the

appropriate number of phases and parameters α and T. In this sense, any non-negative behavior

could be represented through these distributions, but this is not completely true because the

number of phases needed could be infinite, which is computationally nonviable.

1.6 Phase-Type Random Variates Generation

In many large applications, simulation is the appropriate tool to model the system because of

the complex relations between different stochastic variables. This makes that a random number

generator become an important tool to model a wide range of non-deterministic systems. Neuts

and Pagano [12] developed two similar algorithms to generate random variates from discrete

and continuous Phase-Type distributions. These algorithms are supported on the alias method

to generate variates from discrete distributions in order to simulate the process of selecting an

initial state and then jump to the next one according to random vectors.

1.7 Fitting Algorithms

In the last twenty years, the problem of fitting the parameters of a Phase-Type distribution has

received great attention from the applied probability community. The relevance of the problem

relies in the wide range of applications that comes from the relaxation of the exponential as-

sumption. This allows the inclusion of different behaviors in the markovian framework, such as

long tails, self-similarity [16] and fractality [17].

These different approaches can be classified in two major groups: maximum likelihood meth-

ods and moment matching techniques, as noted in [18]. Nevertheless, almost all the algorithms

designed for this task have an important characteristic in common: they reduce they set of

distributions to be fitted, from the whole Phase-Type set to a special subset. In the next sec-

tion, some of the existing algorithms will be listed with a brief description. In section 4, those

algorithms included in the computational package will be revisited and further explained.

2The proof of this property can be found in [15]

6

1.7.1 Moment Matching Algorithms

The moment matching techniques are the most studied algorithms to fit the parameters of

Phase-Type distributions. The first effort is probably due to Sauer and Chandy [19], who fit

any first two moments with a two phase hyper-exponential (for the case of squared coefficient of

variation3 greater than 1), or a generalized Erlang (for C2
x between 0 and 1). Other approach

is proposed in [20], where the first two moments are matched through a Cox distribution, which

in the case of C2
x ≥ 1 has two phases, and in the case 0 < C2

x < 1 becomes an Erlang distribution.

An algorithm to tackle the problem of matching three moments was first proposed by John-

son and Taaffe [21], who used a subset of the Phase-Type distributions known as Hyper-Erlang

distributions, which is a convex mixture of Erlang distributions. There they give formulas to

calculate the parameters of a mixture of 2 Erlangs, in order to fit a set of first three moments.

A problem with the obtained distributions is the very large number of phases required. This

paper was followed by [22], where some nonlinear programming techniques are used to fit the

parameters of a Hyper-Erlang and a Coxian distribution. In a companying paper [10], Johnson

and Taaffe analyze the shapes of the densities obtained by their proposed algorithms. As a result

of these and other papers of the authors [23] and [24], they developed a software tool for fitting

the parameters of Phase-Type distributions known as MEFIT. A close effort in this directions

was made by Schmickler [25], who present an algorithm to fit the parameters of a mixture of

Erlang distributions using a nonlinear algorithm to solve a set of moment matching nonlinear

equations. The implementation of this technique is done in a computational tool known as

MEDA. This two different approaches were analyzed in [18] and will not be discussed elsewhere

in this document.

In recent years, some approaches have been developed, beginning by the one presented by

Telek and Heindl [4] in 2002, who worked with acyclic Phase-Type distributions of second order

(two phases). Then in 2003 Osogami and Harchol published a series of papers [26] [27] [5] where

they characterizes the bounds imposed over the first three moments representable by Erlang-

Coxian distributions, a subset of Phase-Type distributions introduced by them. Afterwards

Bobbio, Horvath and Telek [6] presented in 2005 an algorithm to match first three moments

with acyclic Phase-Type distributions with the minimal number of phases needed to do it.

These algorithms will be further illustrated in section 4 as well as they implementation in the

framework.

3The squared coefficient of variation is defined as C
2
x = V (x)

E(x)2

7

1.7.2 Maximum Likelihood Algorithms

In contrast to moment matching approaches, maximum likelihood algorithms for fitting Phase-

Type distributions have been recently developed. The first approach in this way was developed

by Bobbio and Cumani [28], and some results about its computational behavior can be found in

[29]. The algorithm is built over the subset of Acyclic Phase-Type distributions, which have an

upper triangular generator matrix and a canonical form [30]. For the maximization of the log-

likelihood function, the algorithm chooses an initial point and linearizes its neighborhood, then

solves a linear programming problem and the solution is the initial point for the next iteration.

Because this algorithm has been extensively studied in [18] and [29], it will not be discussed

further in this document.

Another approach has come from the use of the EM algorithm proposed by Dempster et.

al. [31], to fit the parameters of a Phase-Type distribution. The first one is due to Asmussen

et. al. [1] and is the only one that faces the problem of fitting the whole set of Phase-Type

distributions. Other approximations have been done by Khayari et. al. [2], who use the EM

algorithm to fit the parameters of a hyper-exponential distribution, and by Thümmler et. al.[3],

who work with set subset of hyper-Erlang distributions, that are also dense in [0,∞).

1.7.3 Other approaches

Other important approach is the one developed by Feldmann and Whitt [16], which is centered

in the approximation of theoretical density functions with long tails through hyper-exponential

distributions. To apply it for data set, it is necessary to make an intermediate step, in which

the data must be fitted to a long-tailed distribution function, as the well-known Weibull and

Pareto distributions. This imposes a restriction in the applicability of the method that was

noted by [2]. Finally, the approach developed by Riska et. al.[32] can be seen as an extension

of the one proposed by Khayari [2], in the sense that it uses the EM algorithm to fit long-tailed

data sets to hyper-exponential distributions. Nevertheless, they tackle the problem by splitting

the data set in several subsets that have a Squared Coefficient of Variation in a predetermined

range. In this way, the algorithm does not obtain a global optimal distribution but a set of

distributions that are finally mixed in a single one. This approach allows that the tail and the

body of the distributions have different treatments and the distribution obtained captures the

whole behavior of the data set. They finally improve the algorithm by adding an initial Erlang

distribution in order to capture non-monotone decreasing probability density functions, but the

parameter fit for the Erlang distribution is made by matching the the first two moments of the

data subset that has the non-monotone decreasing behavior.

8

Even though the algorithms described are all for the case of continuous Phase-Type distri-

butions, some important efforts have been done to solve the analogous problem for the discrete

case. One of the approaches was made for discrete distribution of second order[4], as an analog

of the presented above. The other one was presented in [33], where a canonical form for acyclic

discrete distributions is constructed as well as an algorithm designed for fitting the distribution

parameters of this class from a data set.

9

Chapter II

jPhase: the Object-Oriented Framework

One of the contributions of this work is the design and implementation of an object-oriented

framework that allows the computational manipulation Phase-Type distributions. To date, there

is no academic or commercial software that can offer the capabilities of representation nor ma-

nipulation of Phase-Type distribution in a unified fashion. For example, with the developed tool,

it is possible to create an object that represents a continuous Phase-Type distribution, calculate

the value of its probability density function (pdf) or its cumulative distribution function (cdf),

as well as any power moment. It is also possible to compute the minimum or the maximum

between two distributions, as well as other closure properties, e.g. the distribution of the waiting

time in a M/PH/1 queue.

Now, some of the most important issues about the computational structure will be discussed

in order to give a good understanding of the framework. It must be said that the computational

architecture is divided in three gross packages: jPhase, jPhaseGenerator and jPhaseFit. The

first is related to the computational representation of Phase-Type distributions and will be

explained in this section. The second builds the structure to implement Phase-Type random

variates generators and will be discussed in section 3. The last one offers a computational rep-

resentation of Phase-Type fitting algorithms and will be explained in detail in section 4. The

first package can be seen as the heart of the whole framework and the others are supported on it.

2.1 General Structure

The jPhase package is supported on a set of Interfaces, Abstract Classes and Concrete Classes.

The Interfaces determine the characteristics of an object and have no implementation of any

method. As can be seen in the simple Class Diagram of Figure 1, there are three Interfaces in

the JPhase package: PhaseVar, ContPhaseVar, and DiscPhaseVar. These Interfaces determines

the behavior of a PhaseType distribution in both the continuous and discrete cases.

10

Figure 1: Simple jPhase Package Class Diagram

The Abstract Classes AbstractContPhaseVar and AbstractDiscPhaseVar implements the

corresponding Interface (discrete or continuous), in order to develop some of the methods de-

termined by the Interfaces. Finally, the Concrete Classes extends the corresponding Abstract

class, and thus they make use of the already implemented methods. These methods are useful

for any user that wants to develop an own Concrete Class, because he or she doesn’t need to

get worried about the whole set of distribution properties, but only needs to implement a little

set of simple methods. In the next sections, the properties of these Interfaces, Abstract and

Concrete classes will be explained.

2.2 Interfaces

As it was said above, the jPhase package consists of three interfaces, that determine the behavior

of any Phase-Type distribution as shown next.

• PhaseVar

This interface defines the set of properties that are common to both discrete and continuous

Phase-type distributions. Since this is the core Interface in the framework, it has the major

quantity of methods and all other Interfaces ans Classes have fewer. The methods that the

Interface force to implement for any distribution can be divided in three groups: access,

moments and distribution methods.

• DiscPhaseVar and ContPhaseVar

This interfaces determine some of the closure properties valid for discrete and continuous

Phase-Type variables, as those discussed in section 1. The methods defined by each one

of this interfaces can be partitioned in two groups: distribution and closure methods. The

closure properties can only be defined at this level because each one of the discrete and

11

Table 1: Some methods for the PhaseVar interface
Type Method Result

getMatrix() Generator matrix A

setMatrix(A) Set the transition matrix equal to the parameter

getVector() Initial probability distribution vector α

Access
methods

setVector(α) Set the initial probability vector equal to the parameter

getNumPhases() Number of transient phases in the distribution

getVec0() Value of α0

getMat0() Exit rate vector a = −A1

copy() Deep copy of the distribution

expectedValue() Expected value of the distribution

Moments variance() Variance of the distribution

methods stdDeviation() Returns the standard deviation.

CV() Squared coefficient of Variance.

moment(k) k-th non-central moment of the distribution.

cdf(x) Cumulative distribution function at x

prob(a, b) Probability that the variable takes a value between a and b

Distribution survival(x) Survival function at x

methods lossFunction1(x) Value of the order-one loss function evaluated at x

lossFunction2(x) Value of the order-two loss function evaluated at x

quantil(x) Quantil x of the distribution

median() Median of the distribution

12

continuous sets are closed under these properties, but not the whole set of Phase-Type

distributions. Some of the methods defined by the interfaces are shown in Table 2, where

all but the distribution-related methods apply for both cases. Next, in Table 3 some other

methods are shown, but they are only defined for the continuous class, as discussed in

section 1.4.

Table 2: Some methods for the DiscPhaseVar and ContPhaseVar interface
Type Method Result

Distribution
methods

pmf(x)
or
pdf(x)

Value of the probability mass function at x (discrete case)
or the probability density function (continuous case)

sum(Y) Convolution between the original distribution and Y

sumGeom(p)Sum of a geometric number (with parameter p) of i.i.d.
Phase-Type distributions as the original one

Closure
methods

sumPH(Y) Convolution of a discrete Phase-Type (Y) number of i.i.d.
Phase-Type distributions

mix(p,
Y)

Convex mixture between the original distribution (with
weight p) and Y

min(Y) Minimum between the original distribution and Y

max(Y) Maximum between the original distribution and Y

Other
methods

newVar(n) New n phase variable with the same representation as the
original

toString()Returns a string representation of the Phase-Type distribu-
tion (including its associated vector and the matrix)

Table 3: Some further closure methods for the ContPhaseVar interface
Method Result

times(k) Distribution of the variable scaled by k

residualTime(x) Distribution of the residual time at x

eqResidualTime() Distribution of the equilibrium residual time

waitingQ(ρ) Distribution of the waiting time in a M/PH/1 queue with
traffic coefficient equal to ρ

2.3 Abstract Classes

As shown in Figure 1, the ContPhaseVar interface is implemented by the abstract class Abstract-

ContPhaseVar, which implements almost all the methods defined by PhaseVar and Cont-

PhaseVar. In particular, none of the methods implemented by this class depends on the formal

representation of the matrices and vectors involved. This means that all the operations are

executed using solvers and preconditioners that apply for both sparse and dense representations

13

of matrices and vectors. Moreover the probably most difficult routines are solved by this ab-

stract class, such as the computation of the probability density function, that implies the use of

uniformization methods for solve a set of differential equations[13]. The same arguments apply

for the abstract class AbstractDiscPhaseVar, that implements the interface DiscPhaseVar.

This way, the only methods that the user must implement when developing a Concrete Class

that extends AbstractContPhaseVar or AbstractDiscPhaseVar are:

• getMatrix and setMatrix

• getVector and setVector

• newVar

• copy

As can be seen, this methods depend on the particular representation of the distribution, e.g.

if the matrix is represented by a particular sparse pattern, then the only one class of matrices

that can be set must have the same pattern. Also the newVar and copy methods must return

a variable that belongs to the same class of the original one. The Concrete classes explained in

the next section are themselves examples of classes that extend the abstract ones.

2.4 Concrete Classes

The developed concrete classes are those that are a final user will usually utilize. They have

been designed as general Phase-Type representations for the continuous and discrete cases, and

with dense and sparse storage. The DenseContPhaseVar and DenseDiscPhaseVar are classes

that represent continuous and discrete Phase-Type distributions, using the DenseMatrix and

DenseVector classes defined by MTJ. This classes are useful for many applications, where the

number of phases is not large and the memory is not a problem. They also have constructors for

many simple distributions such as exponential or Erlang in the continuous case, and geometric

or negative binomial in the discrete case.

Nevertheless, the use of matrices with dense representation can be a problem because of the

large number of phases. The SparseContPhaseVar and SparseDiscPhaseVar classes are built

over the FlexCompRowMatrix and SparseVector MTJ classes, which give a good alternative

when the number of phases is large but the number of entries is little relative to the total

number of n2 entries. It is important to note that the FlexCompRowMatrix allows a flexible sparse

pattern stored by rows, that makes of this class a general sparse representation. Other specific

representation could be developed by using a particular sparse pattern, e.g. upperdiagonal

matrices.

14

2.5 Examples

In order to give a closer understanding of jPhase, some examples will be given to clarify the

construction and manipulation of the computational objects. As shown in Figure 2, the distri-

butions can be created from arrays of doubles, that represent the initial probability vector and

the generator matrix of the transient states (as specified in section 1). Once the distributions

are created, they can be manipulated through the use of closure properties, as shown in Figure

2, where the convolution between the variables v1 and v2 is calculated.

File example1.java

double [] [] A = new double [] [] { { − 2 , 2 } , { 2 , − 5 } } ;
double [] a lpha = new double [] { 0 . 2 , 0 . 4 } ;
DenseContPhaseVar v1 = new DenseContPhaseVar (alpha , A) ;

double [] [] B = new double [] [] { { −4 , 2 , 1} , {1 , −3 , 1} , {2 , 1 , −5} } ;
double [] beta = new double [] { 0 . 1 , 0 . 2 , 0 . 2 } ;
DenseContPhaseVar v2 = new DenseContPhaseVar (beta , B) ;

ContPhaseVar v3 = v1 . sum(v2) ;
System . out . p r i n t l n (”v3 : ”+v3 . t oS t r i ng ()) ;

Figure 2: jPhase: Example 1

The resulting variable from the precious code has the usual representation, which includes

the initial probability vector α and the transition matrix T, as explained in section 1. The

result from the former example is shown next, where the calculated variable is printed.

File resExample1.txt

v3 :

Phase−Type D i s t r i bu t i on
Number o f Phases : 5
Vector :

0 .2000 0 .4000 0 .0400 0 .0800 0 .0800
Matrix :

−2.0000 2 .0000 0 .0000 0 .0000 0 .0000
2 .0000 −5.0000 0 .3000 0 .6000 0 .6000
0 .0000 0 .0000 −4.0000 2 .0000 1 .0000
0 .0000 0 .0000 1 .0000 −3.0000 1 .0000
0 .0000 0 .0000 2 .0000 1 .0000 −5.0000

Figure 3: jPhase: Result for Example 1

Since jPhase is built over the Matrix Toolkit for Java (MTJ) library [34], it is also possible to

15

construct Phase-Type distributions from matrices and vectors defined in that library. As can be

seen in the following example, the matrix and the vector of the Phase-Type distribution are first

built as DenseMatrix and DenseVector (MTJ objects), and then the continuous Phase-Type

distribution is constructed.

File example2.java

DenseMatrix A = new DenseMatrix (
new double [] [] { { −4 , 2 , 1} , {1 , −3 , 1} , {2 , 1 , −5} }) ;

DenseVector alpha = new DenseVector (new double [] { 0 . 1 , 0 . 2 , 0 . 2 }) ;

DenseContPhaseVar v1 = new DenseContPhaseVar (alpha , A) ;

double rho = 0 . 5 ;
PhaseVar v2 = v1 . waitingQ (rho) ;
System . out . p r i n t l n (”v2 :\n”+v2 . t oS t r i ng ()) ;

Figure 4: jPhase: Example 2

In the previous example, the distribution of the waiting time in queue is computed taking

the variable v1 as the service time distribution and assuming that the traffic coefficient of the

M/PH/1 queue is equal to 0.5. The resulting distribution is then printed and the output is

shown next.

File resExample2.txt

v2 :

Phase−Type D i s t r i bu t i on
Number o f Phases : 3
Vector :

0 .1500 0 .2250 0 .1250
Matrix :

−3.8500 2 .2250 1 .1250
1 .1500 −2.7750 1 .1250
2 .3000 1 .4500 −4.7500

Figure 5: jPhase: Result for Example 2

Another way to do the former calculations is through the use of the Graphic User Interface

(GUI). This can be used to build Phase-Type variables from direct input, or from a data set

that can be fit the parameters of the distribution. It also allows to compute closure properties

and has the capabilities to show graphically the probability density function or the cumulative

probability distribution of a specified Phase-Type distribution. A sample screenshot of the

developed GUI is shown in Figure 6.

16

Figure 6: jPhase: Graphic User Interface

As can be seen, the developed framework is an easy way to deal with Phase-Type distribu-

tions and can be used as a supporting tool in several practical researches, where the main point

is to build a probabilistic model that describes the system, and the Phase-Type distributions

are an important tool to do it. Thus, the researcher can focus on the modeling issue based on

the computational representation developed in this work.

17

Chapter III

jPhaseGenerator: the variates generator module

This package was developed in order to define the behavior of any Phase-Type random variates

generator. This behavior is specified by the Abstract Class PhaseGenerator, which is the core

the package. As can be seen in Figure 7, this abstract class is extended by the concrete classes

NeutsContPHGenerator and NeutsDiscPHGenerator, that implement the algorithms proposed

by Neuts and Pagano [12].

Figure 7: Simple jPhaseGenerator Package Class Diagram

3.1 PhaseGenerator Interface

This abstract class defines the basic methods that a Phase-Type random variate generator should

have. The class includes an attribute, that belongs to the PhaseVar class, and is the distribution

from which, the random variates will be generated. This distribution can only be specified in the

constructor method, because the variable must be persistent in time for a particular PhaseGen-

erator object. This means that if the user wants to generate variates from another distribution,

he or she must create a new PhaseGenerator.

18

In the constructor method, the variable is assigned and the initialization() method is

called. It is expected that the user employs this method in order to effectively initialize the

algorithm, and then a random variate can be generated after the construction of the PhaseGen-

erator. Another method defined by the Abstract class is getVar(), which always returns the

Phase-Type variable that remain under the PhaseGenerator and is already implemented.

The last two methods that a PhaseGenerator must implement are getRandom() and getRandom(k).

The first one must return a variate that follows the distribution specified at the construction,

and the second must return k independent variates with the same characteristic.

3.2 Concrete Classes

Up to day, two concrete classes extend the previously explained PhaseGenerator abstract class.

These are NeutsContPHGenerator and NeutsDiscPHGenerator, which implement the method

proposed by Neuts and Pagano [12]. The first one implements the continuous case and the sec-

ond the discrete one. The continuous algorithm has a first step, in which the continuous chain

is transformed is a discrete one, using the well-known embedded chain. Thereafter, the main

algorithm (for discrete distributions) can be used for both cases.

The algorithm simulates the whole process in the chain: it first choose an initial state from

the distribution given by the initial probability vector; then it selects a next state to visit using

the discrete distribution associated with the present state, given by the associated row in the

transition matrix; the selection of the next state is repeated until the chosen state is the absorb-

ing one. In the discrete case, the value of the random variate is the number of steps (selections)

made until absorption. For the continuous case, the number of visits to each state is stored and

an Erlang variate is generated for each state with non-zero number of visits. The parameters of

the Erlang distributions are the associated rate of the state and the number of visits carried out.

For example, if the state i was visited ni times and has an associated rate of λi, an Erlang(λi,ni)

random variate must be generated. The sum of these variates over all the states is the value of

the Phase-Type random variate.

Two important issues of this algorithm must be emphasized. The first one is the several

use of discrete distributions to generate the variates, which can be done efficiently through the

alias method [35]. The second issue is that for the continuous case, in addition to the discrete

variates, only Erlang variates must be generated. In the case of many visits to the same state,

these variates can also be efficiently generated by multiplying a gamma variate with parameters

(ni, 1) times λi, that will be an Erlang variate with the required parameters [12].

19

The algorithms implemented in these classes are supported by the utilities class GeneratorUtils,

that have several procedures useful for the generators. Particularly, it has a general implemen-

tation of the alias method used to generate variates from discrete distributions [35]. It also has

an implementation of the polynomial-time algorithm proposed by Gonzalez et. al. [36] to per-

form a Kolmogorov-Smirnov test, that can be useful to test the goodness-of-fit of the generated

numbers in relation to the theoretic Phase-Type distribution.

20

Chapter IV

jPhaseFit: the Fitting Module

This package contains the structure that defines the behavior of the classes that implement al-

gorithms to fit the parameters of a Phase-Type distribution. As shown in Figure 8, the interface

PhaseFitter is in the top of the package and defines the basic method that any PhaseFitter

should have: fit(). This method has no parameters and must return a Phase-Type variable as

the result of the fitting process.

Figure 8: Simple jPhaseFit Package Class Diagram

4.1 Abstract Classes

In the next level, there are two abstract classes that implement the PhaseFitter interface:

ContPhaseFitter and DiscPhaseFitter, for the continuous and discrete case, respectively.

These classes have two additional issues: a constructor method from a data set in array format;

and a method to compute the log-likelihood of the fitted distribution in relation to the data set

(getLoglikelihood()). This is done because the log-likelihood is a usual way to compare the

performance of fitting algorithms. In addition, this classes specify the continuous or discrete

21

nature of the variable to be fitted in two different ways: the first one is the inclusion of the

var attribute, where the fitted variable must be stored (a ContPhaseVar object for the contin-

uous case or a DiscPhaseVar for the discrete case); the other way is the use of a data array as

attribute, that in the continuous case is a double array, and in the discrete case is an integer array.

In the next level of abstract classes, a further division is done between classes that implement

Maximum Likelihood (ML) algorithms and those related to Moment Matching techniques. This

is done for both continuous and discrete cases. For the ML classes (MLContPhaseFitter and

MLDiscPhaseFitter), there is a new attribute called logLH, that stores the log-likelihood value in

order to take advance of the usual computation of the log-likelihood in the fitting process. For the

Moment-Matching related classes (MomentsContPhaseFitter and MomentsDiscPhaseFitter),

a new set of attributes is defined: m1, m2, and m3. These are the moments to me matched and

are specified with a new constructor that receives only the three moments to be matched. An

alternative way is the use of the redefined constructor that receives the data trace and calcu-

lates its moments. It must be said that there is not alternative to change the data, moments of

log-likelihood attributes from outside the class, implying a safe fitting process.

4.2 Concrete Classes: Maximum Likelihood Algorithms

The set of classes that implement maximum likelihood algorithms are almost all for Continuous

Phase-Type distributions, because the most of the efforts have been done in that direction. For

each one of the following algorithms, there is an associated class the executes the procedures to

fit the parameters of a distribution.

4.2.1 General Phase-Type Distribution EM Algorithm [1]

The EM algorithm proposed by Asmussen, Nerman and Olsson [1] is the only one algorithm that

deals with the fitting of the whole set of continuous Phase-Type distribution, without reducing

the distributions to a restricted subset. The EM algorithm was first introduced by Dempster et.

al. [31] to deal with the problem of incomplete data (a good source to review it may be [37]).

The idea behind this algorithm is that a complete sample from Phase-Type realizations should

include the selected initial state, the whole path of states followed until absorption, and the time

spent in each of these states. With this complete sample, it’s easy to estimate the parameters

of the distribution.

Nevertheless the sample obtained from Phase-Type realizations are only the time until ab-

sorption. In this way, the problem can be seen as the estimation of the parameters from an

22

incomplete sample, which makes natural the use of the EM algorithm. The algorithm begins

from an initial guess of the parameters and the iterations include the computation of the likeli-

hood (E-step) and the its maximization to obtain a new set of parameters (M-step). In this case,

the heavy work must be done in the E-step, where a set of n(n + 2) linear differential equations

must be solved for a distribution of n phases. It must be noted that this algorithm does not

select the number of phases, and it must be entered as an initial parameter. Even though this

algorithm has been already evaluated in [18], it is included in the benchmark evaluation because

it is the only one that fits the parameters of the whole Phase-Type class.

The concrete class that implements the algorithm is EMPhaseFit, that extends the abstract

class MLContPhaseFitter. In this implementation, the method fit() doesn’t need the specifi-

cation of any parameter but it tries with distributions from 1 to 10 to find the one that shows

the greatest log-likelihood. To do this, it calls the method fit(n), that executes the proper

algorithm to fit the parameters of a general Phase-Type distribution with n phases. In every it-

eration, this method calls the eStep() and mStep methods that executes the procedures for each

of those steps in the EM algorithm. Particularly, the E-step uses an order-four Runge-Kutta

procedure to solve the set of differential equations, which solution is expressed in the inner class

solution.

The user could also make use of another constructor for this class in order to specify

some features for the algorithm. With the method EMPhaseFit(precision, iterations,

evalPoints), three important features can be set: the precision for stopping the algorithm

when the parameters show little change; the maximum number of iterations that the algorithm

can execute; and the evalPoints parameter determines the factor to multiply the data trace size

in order to obtain the number of evaluation points for the Runge-Kutta method.

4.2.2 HyperExponential Distribution EM Algorithm [2]

The hyper-exponential distribution is a very special case of Phase-Type distributions, since the

initial probability vector defines the probability of choosing the exponential phase to visit, and

the generator matrix have diagonal representation with the rates of the i-th phase in the posi-

tion (i, i). Thus the number of parameter to fit a n-phase hyper-exponential distribution are

2n. The algorithm proposed by Khayari et. al. [2] is also an EM algorithm like the explained

above. It begins with an initial guess of the parameters, that can be random or related to the

properties of the trace (e.g. the expected value). The authors propose an easy way to select

the initial parameters. Then a function to evaluate the quality of the parameters is calculated

in the E-step through the probability density function of the data trace given the parameters.

23

In the M-step, the new set of parameters is computed using estimators for the rates and the

probabilities but not for the number of phases, that is taken as a given parameter.

The implementation of the algorithm was done in the EMHyperExpoFit class, where a method

fit(n) is implemented in order to fit a distribution with n phases. As the method fit() must

also be implemented in order to follow the parameters of the PhaseFitter interface, it executes

several trials of configurations from one to ten phases, and selects the distribution with greatest

likelihood. With the use of another constructor, the user can also specify the maximum number

of iterations that the algorithm can execute and the precision level required to determine when

the change in the estimated parameters is too little and the algorithm should stop.

4.2.3 HyperErlang Distribution EM Algorithm [3]

In 2005, Thümmler et. al. presented a method that fits the parameters of a hyper-Erlang distri-

bution [3], which is a very interesting subset of the Phase-Type distributions since they are also

dense in [0,∞). In some results provided by Thümmler et. al.[3], the EM algorithm developed

for this special class has a better behavior in terms of likelihood than the one designed for the

complete Phase family [1]. The algorithm needs receives as a parameter the number of Erlang

branches in the distribution as well as the total number of exponential phases in the distribution.

With this information, the algorithm determines all the possible configurations of the Erlang

branches and executes a version of the EM algorithm for each case. Finally, the configuration

with the greatest likelihood is selected as the result of the algorithm.

As can be seen, this algorithm needs more information than the previous ones, and so the

routine fit() makes a different work than just try distributions with one to ten phases. In the

EMHyperErlangFit class, the method fit() guides the search of the configuration by means

of the coefficient of variation of the data trace. When the coefficient is lower than one, then

it doesn’t allow more than one branch since it has been shown that the Phase-Type variable

with the least coefficient of variation is the n-Erlang(1
n
) [38]. When the coefficient of variation is

grater than one, it enforces the creation of multiple branches as well as phases in each of them.

The method fit(n, m) executes the effective procedure proposed in the paper for a distributions

with n phases and m branches. When all the possible configurations has been determined, this

method calls fit(n, m, r) where the number of phases at the i-th branch is ri. For this method,

the parameters related to precision and number of iterations are important and the user can fix

them with use of a special constructor.

24

4.3 Concrete Classes: Moment Matching Algorithms

The distribution moments usually play an important role in the performance analysis of real

systems [5]. This has been an important motivation for the improvement of moment matching

techniques, and the attention given by different research communities (Operations Research,

Computer Science and Telecommunication Networks, among others). Some of the most recent

advances have been implemented in the jPhaseFit module, as will be explained in this section.

4.3.1 Acyclic Continuous order-2 Distributions [4]

In 2002 Telek and Heindl [4] proposed an algorithm to fit the parameters of an acyclic Phase-

Type distributions of second order (two phases). Acyclic distributions have been extensively

studied since they have some important properties, as a canonic form developed by Cumani [30]

and a upper triangular transition or generator matrix. In that paper, they establish bounds on

the set of first three moments representable by acyclic distributions of second order, for the dis-

crete and continuous cases. Over the characterization of these bounds, they build the algorithm

that matches three moments with the three parameters of this distribution: the rates of each

phase and the absorption probability after the first phase (the initial probability is all in the

first phase as in the Coxian distribution).

This algorithm is implemented by the class MomentsACPH2Fit, that extends the abstract

class MomentsContPhaseFitter. As it is constructed with the three moments to be matched

(given explicitly or computed from a data trace), the algorithm begins with the computation

of the bounds, in order to determine if the moment set is representable. If not, the moments

are corrected to the nearest point in the representable region with a warning message about the

correction for the user. When the moment set is representable, the parameters of the distribu-

tion are calculated according to the equations shown by the authors. Finally, the distribution

is constructed with the parameters and returned to the user.

In the same paper, the authors present an analogous algorithm for the discrete case. It works

in a similar fashion and is completely implemented by the class MomentsADPH2Fit, that extends

the abstract class MomentsDiscPhaseFitter.

4.3.2 ErlangCoxian Distributions[5]

The next step in moment-matching techniques was given by Osogami and Harchol in a series

of papers [26] [27] [5]. This extension consists on the characterization of the bounds imposed

over the first three moments representable by a Phase-Type distribution withn n phases. They

also introduce Erlang-Coxian distributions, a name due to the fact that they can be represented

25

as the convolution of an Erlang and a Coxian distribution of second order. They present an

algorithm to fit the parameters of a Erlang-Coxian distribution with or without mass at zero,

an important issue in constructing matrix-geometric models from phase type distributions. An

important issue is that the algorithm itself determines the number of phases needed to represent

the set of moments, making easier the use of the algorithm since the user doesn’t need to try

with different configurations. The resulting distributions are not large in the number of phases

but are not strictly minimal.

The implementation of the algorithms is given by two classes: MomentsECCompleteFit

and MomentsECPositiveFit. The first one is built over the “complete solution” proposed by

the authors, where the moment set is representable by the convolution of Erlang and Cox-

ian distribution but the resulting distribution can have a positive mass on zero. To avoid

this, the second class implements the “positive solution”, where all the resulting distributions

have no mass at zero, but the Erlang-Coxian distribution must be extended through a con-

volution or a convex mixture with a exponential distribution in order to obtain the strictly

positiveness. Whenever the complete solution returns a positive distribution, this will be

used by the MomentsECPositiveFit, an issue that forces this this class to depend on the

MomentsECCompleteFit class.

4.3.3 Acyclic Continuous Distributions [6]

The last effort done in this area was made in 2005 by Bobbio, Horvath and Telek [6], who present

an algorithm to match a set of first three moments with acyclic Phase-Type distributions(APH).

They show the possible sets that can be represented by an acyclic distribution of order n. Then

they show how to match the first three moments in a minimal way, i.e. using the minimal num-

ber of phases needed to do it. It is done by determining the region representable by an APH

of n phases but not with an APH with n − 1. This region is then partitioned in five areas that

represent different distribution configurations, such as the Erlang-Exp structure that represents

and n − 1 Erlang distribution with an additional exponential phase after it.

The algorithm proposed by the authors for the positive case is implemented in the MomentsACPHFit

class. There the algorithm begins with the first three non-central moments and computes the

first two normalized moments. With this information, the required number of phases is com-

puted and the moment set is evaluated in order to find in which region it falls. When it is

determined, the parameters are fitted according to the equations presented by the authors.

26

Chapter V

Fitting Algorithms Benchmarking

The algorithms presented in the preceding section show different features that may make them

more suitable for certain applications. In this section, these algorithm are subject to a com-

parative analysis in order to get offer more information about their performance. The following

sections are devoted to the illustration of the methodology used for the analysis, the data traces

used to test the algorithms and the obtained results. With this results, it is expected that the

jPhase user has more information about which algorithm select in the development of a specific

application.

5.1 Methodology

The methodology here exposed has been widely used in different works as a way to evaluate

the performance of a particular algorithm [29] [3]. It consists of the selection of a wide range of

probability distributions that present different behaviors, generate random numbers with such

distributions and used those traces as input for the algorithms. In addition, some real traces are

brought from well-known sources in order to evaluate the algorithms against data characteristics

closer to those that an analyst can face in a real application.

Once any algorithm has been executed, a Phase-Type distribution is obtained and the Mea-

sures of Performance (MOPs) are computed. These measures were first presented in [29], as

the result of the discussion held by many researchers at the workshop “Fitting Phase-Type

Distributions” in 1991. The measures are:

• Absolute error on First Moment:

e1 =
|e1 − ê1|

e1
.

• Absolute error on Second Moment:

e2 =
|e2 − ê2|

e2
.

27

• Absolute error on Third Moment:

e3 =
|e3 − ê3|

e3
.

• Minus Cross Entropy (log-likelihood):
∫ ∞

0
logf̂(t)dF (t).

• Absolute difference between cumulative probability functions:
∫ ∞

0
|F (t) − F̂ (t)|dt.

Here ei is the i-th non-centered moment of the original distribution (or data trace) and êi is

the i-th non-centered moment of the approximated Phase-Type distribution. The Minus Cross

Entropy is reduced to the log-likelihood (logLH) when the original distribution is a data trace.

Finally, the last MOP is different from that presented in [29], since they use the probability

density (f(t)) instead of the cumulative distribution function (F (t)). This is because the cumu-

lative distribution is limited to take values in the interval [0, 1] and thus, it is a good way to

compare the performance of a particular algorithm against different traces.

5.2 Selected Traces

The traces selected are also based in those used in [29] as benchmark distributions. These

distributions provide a wide range of behaviors, including distributions usually found in appli-

cations, and some challenging characteristics as long tails, multi-modality, low variability and

sharp jumps in the density function [18]. Nevertheless, two more distributions were included

from those proposed in [17] in order to analyze the behavior of the algorithms when the data

exhibits heavy tails. These distributions conform the set of “Generated Traces”, since for each

one of them a sample of 1000 random numbers was generated. The specific characteristics of

the distributions are summarized in Table 4.

In addition to the generated distributions, two real traces were included in the analysis. The

first one will be known as the NASA trace, and is a sample of 65000 data points taken from

the well known NASA-HTTP trace that contains HTTP requests to the NASA Kennedy Space

Center WWW server in Florida [39]. As was stated by [40], this data trace shows heavy tail

behavior, which is a relevant feature to analyze the algorithm preformance. The second trace

constains data about service times in a Call center. This data set was collected by Professor

Mandelbaum and can be accessed from [41]. The relevance of the trace comes from the bimodal-

ity shown by the process, that is related to the different costumer behaviors.

28

Family Density Label Parameters Observations

Weibull f(t) = β
η

(

t
η

)β−1
e
−

(

t
η

)β

, t > 0 W1 η = 1 β = 1.5 Decreasing
hazard rate

W2 η = 1 β = 0.5 Long tail

L1 µ = 1 σ = 1.8 Long Tail

Lognormal f(t) = 1

t
√

2πσ2
e−

(lnt−µ)

2σ2 , t > 0 L2 µ = 1 σ = 1.2

L3 µ = 1 σ = 0.2 Low Vari-
ability

Uniform f(t) = 1
b−a

, a ≤ t ≤ b U1 a = 0 b = 1 Low vari-
ability

U2 a = 1 b = 2 Sharp
jumps in
pdf

Shifted
Exponen-
tial

f(t) = 1
2e−t + 1

2e−(t−1)I(t ≥ 1), t > 0 SE Sharp
jumps in
pdf

Matrix
Exponen-
tial

f(t) =
(

1 + 1
(2π)2

)

(1 − cos(2πt))e−t ME Multi-
modality

Pareto I f(t) =

{

αβ−1e
−α

β
t
, t ≤ β

ααβe−αt−(α+1), t > β
PI α = 1.5 β = 4 Heavy Tail

Pareto II f(t) = βαe−
β
t

Γ(α) t−(α+1), t > 0 PII α = 1.2 β = 2 Heavy Tail

Table 4: Generated Traces

29

5.3 Results

Given the numerous results related to the comparative analysis, the tables with the whole set

of numerical results has been left for the Appendix. In this section, the analysis is centered in

the Figures presented and other relevant results included in the tables.

5.3.1 Results on Matching Moment Algorithms

In Figures 9 and 10, the results for the Moment Matching algorithms in term of log-likelihood

are presented. As stated above, these algorithms match perfectly the first three moments of any

distribution. Therefore the errors in first, second and third moments are all equal to zero.

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

A
C

P
H

2

E
C

C
o

m
p

le
te

A
C

P
H

A
C

P
H

2

E
C

C
o

m
p

le
te

A
C

P
H

A
C

P
H

2

E
C

C
o

m
p

le
te

A
C

P
H

A
C

P
H

2

E
C

C
o

m
p

le
te

A
C

P
H

A
C

P
H

2

E
C

C
o

m
p

le
te

A
C

P
H

A
C

P
H

2

E
C

C
o

m
p

le
te

A
C

P
H

A
C

P
H

2

E
C

C
o

m
p

le
te

A
C

P
H

A
C

P
H

2

E
C

C
o

m
p

le
te

A
C

P
H

A
C

P
H

2

E
C

C
o

m
p

le
te

A
C

P
H

A
C

P
H

2

E
C

C
o

m
p

le
te

A
C

P
H

A
C

P
H

2

E
C

C
o

m
p

le
te

A
C

P
H

W1 W2 L1 L2 L3 U1 U2 SE ME PI PII

Trace - Fitting Method

L
o

g
L

ik
el

ih
o

o
d

Figure 9: Loglikelihood of Generated Traces for Moment Methods

-700000

-600000

-500000

-400000

-300000

-200000

-100000

0

ACPH2 ECComplete ACPH ACPH2 ECComplete ACPH

NASA CallCenter

Trace - Fitting Method

L
o

g
L

ik
el

ih
o

o
d

Figure 10: Loglikelihood of Real Traces for Moment Methods

In these graphics, it can be seen that the three algorithms have a very close performance in

almost all the traces. Nevertheless, the ACPH2 method fails when the trace shows low variabil-

ity, as in W1, L3, U1 and U2. This is because the least coefficient of variation that can be reached

30

with an order-2 Continuous Phase-Type Distribution is 0.5, as stated in [38].

In all other traces, the differences between ECComplete and ACPH methods arise only in

W1 and U1, where the second one shows greater log-likelihood. As can be seen in Figure 11, this

is related to the inclusion of one extra phase in the latter method.

0

5

10

15

20

25

30

35

A
C

P
H

2

E
C

C
om

pl
et

e

A
C

P
H

A
C

P
H

2

E
C

C
o

m
pl

e
te

A
C

P
H

A
C

P
H

2

E
C

C
o

m
pl

et
e

A
C

P
H

A
C

P
H

2

E
C

C
om

pl
et

e

A
C

P
H

A
C

P
H

2

E
C

C
o

m
pl

e
te

A
C

P
H

A
C

P
H

2

E
C

C
o

m
pl

et
e

A
C

P
H

A
C

P
H

2

E
C

C
om

p
le

te

A
C

P
H

A
C

P
H

2

E
C

C
o

m
p

le
te

A
C

P
H

A
C

P
H

2

E
C

C
o

m
pl

e
te

A
C

P
H

A
C

P
H

2

E
C

C
om

p
le

te

A
C

P
H

A
C

P
H

2

E
C

C
o

m
p

le
te

A
C

P
H

A
C

P
H

2

E
C

C
o

m
pl

e
te

A
C

P
H

A
C

P
H

2

E
C

C
om

p
le

te

A
C

P
H

W1 W2 W2 L1 L2 L3 U1 U2 SE ME PI PII NASA CallCenter

Trace - Fitting Method

N
u

m
b

er
 o

f P
h

as
es

Figure 11: Number of phases for Moment Methods

In relation to the area difference between the cumulative distribution functions (c.d.f.)of

the original and the matched distributions, the results are very similar to those found with

the log-likelihood measure. The ACPH method shows a closer approximation to the original

distribution than the ECComplete method in the W1 and U1 traces. In other distributions, there

are nor great differences between both methods, but some distributions shown to be harder for

fitting. That is the case of L1, SE and PII traces, which had errors above 10 percent. The low

variability distributions, such as L3, U1 and U2, needed more phases to be represented but the

c.d.f. area differences are all around 5%.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
C

P
H

2

E
C

C
o

m
pl

et
e

A
C

P
H

A
C

P
H

2

E
C

C
o

m
pl

e
te

A
C

P
H

A
C

P
H

2

E
C

C
om

p
le

te

A
C

P
H

A
C

P
H

2

E
C

C
om

p
le

te

A
C

P
H

A
C

P
H

2

E
C

C
om

pl
et

e

A
C

P
H

A
C

P
H

2

E
C

C
o

m
pl

et
e

A
C

P
H

A
C

P
H

2

E
C

C
om

pl
et

e

A
C

P
H

A
C

P
H

2

E
C

C
o

m
pl

et
e

A
C

P
H

A
C

P
H

2

E
C

C
o

m
pl

e
te

A
C

P
H

A
C

P
H

2

E
C

C
om

p
le

te

A
C

P
H

A
C

P
H

2

E
C

C
om

p
le

te

A
C

P
H

W1 W2 W2 L1 L2 L3 U1 U2 SE ME PI PII

Trace - Fitting Method

A
b

so
lu

te
 c

d
f a

re
a

d
iff

er
en

ce

Figure 12: Area difference in CDF for Moment Methods

From the traces examined, the ACPH2 method seems to be a good alternative when the

31

data does not show low variability. Although it has restrictions on the third representable

moment, it assures distributions with only two phases, which can be of great importance to

avoid dimensionality problems. Nevertheless, for low variable traces the ECComplete and ACPH

methods offer a solution where the other one fails. Both alternatives will find a distribution with

the asked set of moments, but incurring at the cost of a bigger state space. Long and Heavy

Tails can be difficult to be fitted but that’s not necessarily true, since some of these distributions

were adequately approximated.

5.3.2 Results on Maximum Likelihood Algorithms

As all of the algorithms examined in this document need the specification of the number of

phases, the results depend on the selection of this parameter. For the analysis here exposed,

the distributions are assumed to be composed by 4 phases. Nevertheless, the analysis was done

with 2, 4 and 8 phases, results that can be found in the Appendix.

In Figures 13 and 14, the results of the EMHyperExpo, EMPhase and EMHyperErlang related

to the log-likelihood are shown. In general, the obtained log-likelihood with the three algorithms

is very close, but the two latter methods show better values than the former. That is easily seen

in W1, L2, U1, SE and ME traces. A strange behavior is presented in traces L3 and U2, where the

EMPhase method shows a worse performance. This outcome can be due to the complexity of

the algorithm and maybe a better result could be reached with more than 200 iterations. It also

possible that the algorithm fall in a local maximum of the log-likelihood function.

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

W1 W2 W2 L1 L2 L3 U1 U2 SE ME PI PII

Trace - Fitting Method

L
o

g
L

ik
el

ih
o

o
d

Figure 13: Loglikelihood of Generated Traces for Maximum Likelihood Methods over 4-phases
distributions

The better results obtained by the EMPhase and EMHyperErlang in some difficult traces,

32

-700000

-600000

-500000

-400000

-300000

-200000

-100000

0

EMHyperExpo EMPhase EMHyperErlang EMHyperExpo EMPhase EMHyperErlang

NASA CallCenter

Trace - Fitting Method

L
o

g
L

ik
el

ih
o

o
d

Figure 14: Loglikelihood of Real Traces for Maximum Likelihood Methods over 4-phases distri-
butions

such as U1, SE or ME, is a clear signal of the greater flexibility offered by the more general distrib-

utions (Phase-Type and Hyper-Erlang) over the smaller set of Hyper-exponential distributions.

This is result is confirmed in Figures 15 and 16, where the errors over second and third moments

are shown. In general, the EMHyperErlang method reaches the best results in almost all the

traces.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

E
M

H
yp

e
rE

xp
o

E
M

P
h

a
se

E
M

H
yp

e
rE

rl
a

n
g

W1 W2 W2 L1 L2 L3 U1 U2 SE ME PI PII NASA CallCenter

Trace - Fitting Method

E
rr

o
r

o
n

 S
ec

o
n

d
 M

o
m

en
t

Figure 15: Absolute Error on Second Moment for Maximum Likelihood Methods over 4-phases
distributions

An interesting result is given by the EMHyperExpo method, that shows a very good approx-

imation of the second and third moments in the heavy tailed distributions PI and PII. This

feature may be related to the flexibility of the Hyper-exponential distributions to fit long and

heavy tails, as noted by [16]. In general, the approximation to these moments attained by the

three algorithms is very close for the Phase-behaved distributions, as W2 or L2. In other cases,

the errors can be large and the results does not show a pattern about an algorithm than perform

better that the others in all cases.

33

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
M

H
yp

er
E

xp
o

E
M

P
ha

se

E
M

H
yp

er
E

rla
ng

E
M

H
yp

er
E

xp
o

E
M

P
ha

se

E
M

H
yp

er
E

rla
ng

E
M

H
yp

er
E

xp
o

E
M

P
ha

se

E
M

H
yp

er
E

rla
ng

E
M

H
yp

e
rE

xp
o

E
M

P
ha

se

E
M

H
yp

er
E

rla
ng

E
M

H
yp

e
rE

xp
o

E
M

P
ha

se

E
M

H
yp

er
E

rla
n

g

E
M

H
yp

e
rE

xp
o

E
M

P
ha

se

E
M

H
yp

er
E

rla
n

g

E
M

H
yp

e
rE

xp
o

E
M

P
ha

se

E
M

H
yp

e
rE

rla
n

g

E
M

H
yp

er
E

xp
o

E
M

P
ha

se

E
M

H
yp

e
rE

rla
n

g

E
M

H
yp

er
E

xp
o

E
M

P
h

as
e

E
M

H
yp

e
rE

rl
an

g

E
M

H
yp

er
E

xp
o

E
M

P
h

as
e

E
M

H
yp

e
rE

rl
an

g

E
M

H
yp

er
E

xp
o

E
M

P
h

as
e

E
M

H
yp

er
E

rl
an

g

E
M

H
yp

er
E

xp
o

E
M

P
h

as
e

E
M

H
yp

er
E

rl
an

g

E
M

H
yp

er
E

xp
o

E
M

P
ha

se

E
M

H
yp

er
E

rla
ng

W1 W2 W2 L1 L2 L3 U1 U2 SE ME PI PII NASA CallCenter

Trace - Number of Phases

E
rr

o
r

o
n

 T
h

ir
d

 M
o

m
en

t

Figure 16: Absolute Error on Third Moment for Maximum Likelihood Methods over 4-phases
distributions

5.3.3 Further Results on Maximum Likelihood Algorithm

In this section, a particular emphasis on the Maximum Likelihood Algorithms is made. In order

to give more insight on their behavior, each one of the algorithms is analyzed in relation to

the log-likelihood obtained by the matched distribution as a function of the assumed number of

phases.

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

W1 W2 L1 L2 L3 U1 U2 SE ME PI PII

Trace - Number of Phases

L
o

g
L

ik
el

ih
o

o
d

Figure 17: Loglikelihood of Generated Traces for the EMHyperExpo Method

The results for EMHyperExpo method is shown in Figures 17 and 18. It can be easily seen

that the performance of the algorithm is enhanced with the addition of phases for traces W2, L1,

PI, PII. In all this cases, the probability density function if monotonically decreasing, which is

an important feature (and restriction) of Hyper-exponential distributions. In this way, it can

be said that the method can perform better with the addition of phases if the underlying trace

34

exhibits a decreasing density, but not in other cases.

-700000

-600000

-500000

-400000

-300000

-200000

-100000

0

2 4 8 2 4 8

NASA CallCenter

Trace - Number of Phases
Lo

g
L

ik
el

ih
o

o
d

Figure 18: Loglikelihood of Real Traces for the EMHyperExpo Method

In relation to the real traces, the algorithm perform better for the NASA server data, where

the addition of phases consistently increase the reached log-likelihood. Although the distribution

with four phases shows a much better log-likelihood that the 2-phases one, the improvement is

not so large with the addition of four more phases.

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

W1 W2 L1 L2 L3 U1 U2 SE ME PI PII

Trace - Number of Phases

L
o

g
L

ik
el

ih
o

o
d

Figure 19: Loglikelihood of Generated Traces for the EMPhase Method

For the EMPhase method, the results are shown in Figures 19 and 20. It can be seen,

probably better in Tables in the Appendix, that for traces W2, L1, L2, L3, U1, U2, SE and ME,

the algorithm enhance its performance from 2 to 4 phases, but the likelihood does not make an

improvement when the distributions is assumed to have 8 phases. The only one traces where

this result is obtained (a consistent increase in the log-likelihood with the addition of phases)

are W1 and SE.

35

-175645

-175640

-175635

-175630

-175625

-175620

-175615

2 4 8

CallCenter

Trace - Number of Phases

L
o

g
L

ik
el

ih
o

o
d

Figure 20: Loglikelihood of Real Traces for the EMPhase Method

Again, some strange results are obtained from the use of L3 and U2 traces, where the log-

likelihood actually decreases with the addition of phases. This can be due to the restricted

number of iterations (200) established for all the algorithms. These two distributions present a

major challenge for Phase-Type distributions, since the first one has a big peak near to zero,

and the second present two sharp jumps in its density.

In relation to the real traces, a regrettable result is that the size of the NASA trace (65000

data points) made impossible to run the algorithm in the personal computer used for the tests,

since its memory was not enough. For the Call Center trace, the results are shown in Figure

20, where it is evident that the addition of phases generate a better log-likelihood. It can be a

natural result from the better adaptation of the distribution with more phases to the bi-modality

of the trace.

In the case of the EMHyperErlang method, the results are shown in Figures 21 and 22. The

most important result is that the method improve the reached log-likelihood with addition of

phase in almost all the traces. The only one where this is not true is the L1 data set, where

the fit is almost the same in all the Measures of Performance for the 4 and 8 phases cases. For

the W2 trace, the log-likelihood of the matched distribution could not be obtained because of

numerical problems.

For the real traces, the results are very similar, since the algorithm behaves better with

the addition of phases in both cases. This may be the result of the flexibility of this class of

distributions, which is an important issue for getting closer to the original distribution when it

present difficult characteristics.

36

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

W1 W2 L1 L2 L3 U1 U2 SE ME PI PII

Trace - Number of Phases

L
o

g
L

ik
el

ih
o

o
d

Figure 21: Loglikelihood of Generated Traces for the EMHyperErlang Method

-700000

-600000

-500000

-400000

-300000

-200000

-100000

0

2 4 8 2 4 8

NASA CallCenter

Trace - Number of Phases

Lo
gL

ik
el

ih
o

o
d

Figure 22: Loglikelihood of Real Traces for the EMHyperErlang Method

37

Chapter VI

Conclusions

Phase-Type distribution has shown to be a powerful tool in computational probability since they

can be used as input of Markov chains, which allows the use of efficient algorithms to compute

measures of performance of real systems. In this work a computational framework has been

designed and developed in order to allow the computational representation and manipulation of

these distributions. The computational objects allows the user to concentrate in the modeling

issues and not in the computation of distributions, moments or closure properties. In this way,

the developed tool makes more accessible the of Phase-Type distribution for researches inter-

ested in stochastic modeling and performance evaluation of real systems.

The extensibility of the framework helps the user to develop new classes that can have a

different representation (special sparse structures), but still exploiting the implemented meth-

ods in abstract classes. Even more, in the development of such extended classes the user can

just implement some simple methods for the specific representation, or can develop procedures

for the some or all the methods related to the distribution. In this way, the structure is not

restricted to the developed methods, e.g. the researcher could use a different solver to compute

the density function of a particular class of distributions.

The framework also includes a module for Phase-Type variates generation, which can be

used to model large systems using simulation models with Phase-Type distributions. The tool

has itself some procedures to do that, but the user could also develop a new algorithm and

implement it with the help of the utilities methods and the unified framework.

Finally, the fitting module offers a set of recently developed algorithms to fit the parameters

of a Phase-Type distribution from a data trace. It is possible to use general setting for the

algorithms, without specifying any parameter. But the user can also determine specific charac-

teristics, as the number of phases in the distribution, or the precision for convergence criterion.

There is also a framework that can help to design the implementation of new algorithms, since

38

the user have all the distribution classes as well as other algorithms to support his or her devel-

opment.

In relation to the benchmarking, it must be highlighted that the EMHyperExpo method is

the fastest between the Maximum Likelihood Algorithms and EMPhase is the most complex

one. The Moment Matching techniques are even faster since they are all closed functions, which

imply a smaller number of computations than iterative algorithms. In order to choose a partic-

ular algorithm to fit a data set, it is important to account the available computing resources as

well as time for building the distribution from data traces.

Between the Moment Matching methods, the ACPH2 method seems to be a good alter-

native when the data does not show low variability. Nevertheless, for low variable traces the

ECComplete and ACPH methods offer a solution where the first one fails. Both alternatives

will find a distribution with the asked set of moments, but incurring at the cost of a bigger state

space. For low variable distributions, the c.d.f. area difference in these methods is smaller than

in Maximum Likelihood approaches, which gives them an advantage for dealing with this kind

of data.

For Maximum Likelihood algorithms, the traces L3 and U2 were the major challenge and

generated some strange results for the EMPhase method. For all other traces, the behavior

of the methods was always better than Moment Matching techniques in relation to c.d.f. area

difference. In particular, the EMHyperExpo method improves its performance with the addition

of phases for those traces with decreasing density. The EMPhase method enhances its behavior

for most of the traces when the change was between two and four phases, but not with four

more phases. The EMHyperErlang method showed the most consistent improvements, since it

had a better behavior with addition of phases for almost all the traces.

Long and Heavy Tails can be difficult to be fitted but that’s not necessarily true, since some

of these distributions were adequately approximated. In this case, particularly for PII trace,

the EMHyperErlang exhibits the best results in c.d.f. area difference and log-likelihood. It

also shows small errors on the second moment, and its only fail is on the third moment. The

relevance of this result will be related to the dependence of the process to the moments of the

distribution. In case of having a strongly dependency on the moments, it should be better to

use the Moment Matching techniques, since the other methods does not offer a guarantee over

this matching.

39

Appendix A

Results of Fitting Algorithms

A.1 Results for Moment Matching Algorithms

In this section, the results for the Moment Matching Algorithms are presented. The Measures

of Performance for each algorithm over each trace can be found in in Tables 5, 6, 7, 8, 9 and 10

.

Table 5: Results of Moment Matching Algorithms for Weibull Distributions
Trace Measure Method

ACPH2 ECComplete ACPH

logLH - -877.38 -772.34
W1 Area Difference - 2.02% 1.68%

Phases - 3 4

logLH -1369.90 -1369.90 -1369.90
W2 Area Difference 6.55% 6.55% 6.55%

Phases 2 2 2

Table 6: Results of Moment Matching Algorithms for Lognormal Distributions
Trace Measure Method

ACPH2 ECComplete ACPH

logLH -3183.09 -3183.09 -3183.09
L1 Area Difference 11.78% 11.78% 11.78%

Phases 2 2 2

logLH -2361.99 -2361.99 -2361.99
L2 Area Difference 5.61% 5.61% 5.61%

Phases 2 2 2

logLH - -837.37 -837.20
L3 Area Difference - 1.85% 1.79%

Phases - 26 26

40

Table 7: Results of Moment Matching Algorithms for Uniform Distributions
Trace Measure Method

ACPH2 ECComplete ACPH

logLH - -1303.72 -180.06
U1 Area Difference - 5.60% 4.31%

Phases - 8 9

logLH - -188.99 -190.71
U2 Area Difference - 4.04% 4.09%

Phases - 30 30

Table 8: Results of Moment Matching Algorithms for Expo* Distributions
Trace Measure Method

ACPH2 ECComplete ACPH

logLH -1371.83 -1479.89 -1348.35
SE Area Difference 19.19% 19.32% 19.29%

Phases 2 2 3

logLH -1082.79 -1116.76 -1082.79
ME Area Difference 5.44% 5.70% 5.44%

Phases 2 2 2

Table 9: Results of Moment Matching Algorithms for Pareto Distributions
Trace Measure Method

ACPH2 ECComplete ACPH

logLH -2140.68 -2140.68 -2140.68
PI Area Difference 0.99% 0.99% 0.99%

Phases 2 2 2

logLH -2256.35 -2256.35 -2256.35
PII Area Difference 37.34% 37.34% 37.34%

Phases 2 2 2

Table 10: Results of Moment Matching Algorithms for Real Data Traces
Trace Measure Method

ACPH2 ECComplete ACPH

NASA logLH -618645 -618645 -618645
Phases 2 2 2

CallCenter logLH -175029 -175029 -175029
Phases 2 2 2

41

A.2 Results for Maximum Likelihood Algorithms

Similarly to the Moment Matching Algorithms, in this sections the results for the Maximum

Likelihood algorithms are preseneted. Since all those algorithms need the specification of the

number of phases as an input parameter, the results are divided in three pieces: assumming

distributions with 2, 4 and 8 phases.

A.2.1 Results for 2-phases Distributions

In this section, the results for the Maximum Likelihood Algorithm assuming 2-phase distribu-

tions are presented. The Measures of Performance for each algorithm over each trace can be

found in Tables 11, 12, 13, 14, 15 and 16.

Table 11: Results of Maximum Likelihood Algorithms with 2 phases for Weibull Distributions
Trace Measure Method

EMHyperExpo EMPhase EMHyperErlang

e1 0 0 0
e2 0.4096 0.0643 0.0572

W1 e3 1.3821 0.2123 0.1911
logLH -892.8130 -767.2745 -769.1995

Area Difference 7.42% 1.20% 1.16%

e1 0 0 0
e2 0.3413 0.3419 0.3447

W2 e3 0.6376 0.6383 0.6416
logLH -1311.6388 -1311.6382 -1310.6419

Area Difference 3.83% 3.83% 3.88%

42

Table 12: Results of Maximum Likelihood Algorithms with 2 phases for Lognormal Distributions
Trace Measure Method

EMHyperExpo EMPhase EMHyperErlang

e1 0 0 0
e2 0.5656 0.5667 0.5666

L1 e3 0.8796 0.8803 0.8802
logLH -3048.6947 -3048.7016 -3047.6954

Area Difference 3.91% 3.88% 3.93%

e1 0 0 0
e2 0.0134 0.2092 0.2601

L2 e3 0.2646 0.5169 0.6323
logLH -2362.0681 -2275.7934 -2311.2925

Area Difference 5.61% 2.34% 5.22%

e1 0 0 0
e2 0.9208 0.5545 0.4406

L3 e3 4.3213 0.5422 1.6606
logLH -2029.6261 -2087.3338 -1663.9566

Area Difference 20.47% 34.04% 17.12%

Table 13: Results of Maximum Likelihood Algorithms with 2 phases for Uniform Distributions
Trace Measure Method

EMHyperExpo EMPhase EMHyperErlang

e1 0 0 0
e2 0.5128 0.1825 0.1346

U1 e3 2.0561 0.6801 0.5280
logLH -316.9736 -206.4998 -229.1203

Area Difference 9.36% 5.09% 5.03%

e1 0 0 0
e2 0.9286 0.8294 0.4464

U2 e3 4.4006 0.8864 1.7003
logLH -1408.8661 -2665.2694 -1041.8041

Area Difference 21.04% 46.23% 17.30%

Table 14: Results of Maximum Likelihood Algorithms with 2 phases for Expo* Distributions
Trace Measure Method

EMHyperExpo EMPhase EMHyperErlang

e1 0 0 0
e2 0.2759 0.0508 0.2747

SE e3 0.8316 0.1343 0.8279
logLH -1409.2037 -1361.7107 -1408.2036

Area Difference 19.06% 18.91% 19.04%

e1 0 0 0
e2 0.0581 0.0474 0.0570

ME e3 0.1588 0.0224 0.1565
logLH -1085.9813 -1085.7114 -1084.9810

Area Difference 5.67% 5.56% 5.65%

43

Table 15: Results of Maximum Likelihood Algorithms with 2 phases for Pareto Distributions
Trace Measure Method

EMHyperExpo EMPhase EMHyperErlang

e1 0 0 0
e2 0.1263 0.1269 0.1275

PI e3 0.3981 0.3981 0.4003
logLH -2137.7433 -2137.7459 -2136.7440

Area Difference 0.49% 0.49% 0.46%

e1 0 0 0
e2 0.2273 0.2654 0.2284

PII e3 0.5909 0.6320 0.5923
logLH -2233.9000 -2237.0686 -2232.9004

Area Difference 34.05% 31.91% 34.06%

Table 16: Results of Maximum Likelihood Algorithms with 2 phases for Real Data Traces
Trace Measure Method

EMHyperExpo EMPhase EMHyperErlang

e1 0 - 2.49354E-14
NASA e2 0.8622 - 0.4946

e3 0.9907 - 0.8509
logLH -644108 - -606352

e1 2.00923E-15 - 4.63668E-15
CallCenter e2 0.2368 - 0.0063

e3 0.5924 - 0.0743
logLH -175579 - -175014

44

A.2.2 Results for 4-phases Distributions

In this section, the results for the Maximum Likelihood Algorithm assuming 4-phase distribu-

tions are presented. The Measures of Performance for each algorithm over each trace can be

found in Tables 17, 18, 19, 20, 21 and 22.

Table 17: Results of Maximum Likelihood Algorithms with 4 phases for Weibull Distributions
Trace Measure Method

EMHyperExpo EMPhase EMHyperErlang

e1 0 0 0
e2 0.4096 0.0524 0.0036

W1 e3 1.3821 0.1744 0.0253
logLH -892.8130 -765.0364 -761.8578

Area Difference 7.42% 1.00% 2.63%

e1 0 0 0
e2 0.0161 0.0030 0.0211

W2 e3 0.0254 0.0345 0.0385
logLH -1181.4837 -1190.3995 -1180.4900

Area Difference 1.19% 1.09% 1.23%

Table 18: Results of Maximum Likelihood Algorithms with 4 phases for Lognormal Distributions
Trace Measure Method

EMHyperExpo EMPhase EMHyperErlang

e1 0 0 0
e2 0.1066 0.3297 0.0911

L1 e3 0.2551 0.6627 0.2119
logLH -2981.9536 -2989.1799 -2980.9138

Area Difference 0.92% 0.96% 0.91%

e1 0 0 0
e2 0.1295 0.0722 0.0270

L2 e3 0.4306 0.1822 0.1463
logLH -2357.5946 -2254.3216 -2248.1968

Area Difference 5.66% 1.89% 9.58%

e1 0 0 0
e2 0.9208 0.6040 0.2005

L3 e3 4.3213 0.6609 0.6629
logLH -2029.6261 -2102.4599 -1338.0827

Area Difference 20.47% 36.47% 13.36%

45

Table 19: Results of Maximum Likelihood Algorithms with 4 phases for Uniform Distributions
Trace Measure Method

EMHyperExpo EMPhase EMHyperErlang

e1 0 0 0
e2 0.5128 0.1079 0.0985

U1 e3 2.0561 0.3999 0.3570
logLH -316.9736 -164.4281 -153.5563

Area Difference 9.36% 3.77% 4.32%

e1 0 0 0
e2 0.9286 0.8406 0.2053

U2 e3 4.4006 0.9059 0.6877
logLH -1408.8661 -2977.5894 -713.1454

Area Difference 21.04% 47.18% 13.08%

Table 20: Results of Maximum Likelihood Algorithms with 4 phases for Expo* Distributions
Trace Measure Method

EMHyperExpo EMPhase EMHyperErlang

e1 0 0 0
e2 0.2759 0.0215 0.0261

SE e3 0.8316 0.0453 0.0940
logLH -1409.2037 -1354.7100 -1339.6979

Area Difference 19.06% 19.20% 24.79%

e1 0 0 0
e2 0.0581 0.0072 0.0221

ME e3 0.1588 0.0869 0.0700
logLH -1085.9813 -1030.2481 -1015.3506

Area Difference 5.67% 4.99% 7.69%

Table 21: Results of Maximum Likelihood Algorithms with 4 phases for Pareto Distributions
Trace Measure Method

EMHyperExpo EMPhase EMHyperErlang

PI e1 0 0 0
e2 0.0303 0.1480 0.1764
e3 0.1642 0.4490 0.5136

logLH -2135.4742 -2137.1586 -2135.2907
Area Difference 0.68% 0.28% 9.56%

PII e1 0 0 0
e2 0.0378 0.3363 0.0204
e3 0.1702 0.7191 0.0936

logLH -2229.8913 -2151.7707 -2131.2402
Area Difference 33.80% 33.32% 38.86%

46

Table 22: Results of Maximum Likelihood Algorithms with 4 phases for Real Data Traces
Trace Measure Method

EMHyperExpo EMPhase EMHyperErlang

e1 0 - 0
NASA e2 0.4946 - 0.0325

e3 0.8509 - 0.1002
logLH -606353 - -602614

e1 0 0 0
CallCenter e2 0.0009 0.2383 0.0070

e3 0.0566 0.5919 0.0878
logLH -174957 -175640 -174956

A.2.3 Results for 8-phases Distributions

In this section, the results for the Maximum Likelihood Algorithm assuming 8-phase distribu-

tions are presented. The Measures of Performance for each algorithm over each trace can be

found in Tables 23, 24, 25, 26, 27 and 28.

Table 23: Results of Maximum Likelihood Algorithms with 8 phases for Weibull Distributions
Trace Measure Method

EMHyperExpo EMPhase EMHyperErlang

e1 0 0 0
e2 0.4096 0.0365 0.0018

W1 e3 1.3821 0.1269 0.0031
logLH -892.8130 -762.4475 -756.8369

Area Difference 7.42% 0.82% 10.47%

e1 0 0 0
e2 0.0161 0.0061 0.0146

W2 e3 0.0254 0.0467 0.0218
logLH -1181.4837 -1193.5612

Area Difference 1.19% 1.09%

47

Table 24: Results of Maximum Likelihood Algorithms with 8 phases for Lognormal Distributions
Trace Measure Method

EMHyperExpo EMPhase EMHyperErlang

e1 0 0 0
e2 0.0435 0.3078 0.0897

L1 e3 0.0658 0.6339 0.2081
logLH -2981.9508 -2988.6785 -2980.9101

Area Difference 0.94% 0.86% 0.92%

e1 0 0 0
e2 0.1295 0.0717 0.0319

L2 e3 0.4305 0.1803 0.1588
logLH -2357.5946 -2254.3313 -2230.7668

Area Difference 5.66% 1.89% 26.49%

e1 0 0 0
e2 0.9208 0.6067 0.0804

L3 e3 4.3213 0.6672 0.2472
logLH -2029.6261 -2105.2111 -1063.6292

Area Difference 20.47% 36.64% 8.90%

Table 25: Results of Maximum Likelihood Algorithms with 8 phases for Uniform Distributions
Trace Measure Method

EMHyperExpo EMPhase EMHyperErlang

e1 0 0 0
e2 0.5128 0.1039 0.0326

U1 e3 2.0561 0.3852 0.1144
logLH -316.9736 -161.3988 -109.8480

Area Difference 9.36% 3.66% 9.85%

e1 0 0 0
e2 0.9286 0.8411 0.0848

U2 e3 4.4006 0.9068 0.2658
logLH -1408.8661 -3002.8856 -433.1221

Area Difference 21.04% 47.23% 8.13%

Table 26: Results of Maximum Likelihood Algorithms with 8 phases for Expo* Distributions
Trace Measure Method

EMHyperExpo EMPhase EMHyperErlang

e1 0 0 0
e2 0.2759 0.0072 0.0183

SE e3 0.8316 0.0057 0.0789
logLH -1409.2037 -1348.8209 -1330.1116

Area Difference 19.06% 19.33% 17.80%

e1 0 0 0
e2 0.0581 0.0030 0.0024

ME e3 0.1588 0.1029 0.0079
logLH -1085.9813 -1030.7300 -985.0109

Area Difference 5.67% 4.98% 27.12%

48

Table 27: Results of Maximum Likelihood Algorithms with 8 phases for Pareto Distributions
Trace Measure Method

EMHyperExpo EMPhase EMHyperErlang

e1 0 0 0
e2 0.0303 0.1358 0.0293

PI e3 0.1642 0.4161 0.1674
logLH -2135.4742 -2136.4891 -2130.7689

Area Difference 0.68% 0.27% 1.60%

e1 0 0 0
e2 0.0378 0.0432 0.0448

PII e3 0.1702 0.0802 0.2126
logLH -2229.8913 -2139.7649 -2102.5566

Area Difference 33.80% 32.89% 13.92%

Table 28: Results of Maximum Likelihood Algorithms with 8 phases for Real Data Traces
Trace Measure Method

EMHyperExpo EMPhase EMHyperErlang

e1 0 - 0
NASA e2 0.0326 - 0.0292

e3 0.1006 - 0.0934
logLH -602615 - -598599

e1 0 - 0
CallCenter e2 0.0136 - 0.0880

e3 0.0497 - 0.3395
logLH -174955 - -174325

49

References

[1] S. Asmussen, O. Nerman, and M. Olsson, “Fitting phase type distributions via the em
algorithm,” Scandinavian Journal of Statistics, vol. 23, pp. 419,441, 1996.

[2] R. Khayari, R. Sadre, and B. Haverkort, “Fitting world-wide web request traces with the
em-algorithm,” Performance Evaluation, vol. 52, pp. 175–191, 2003.

[3] A. Thümmler, P. Buchholz, and M. Telek, “A novel approach for fitting probability dis-
tributions to real trace data with the em algorithm,” in Proceedings of the International
Conference on Dependable Systems and Networks, 2005.

[4] M. Telek and A. Heindl, “Matching moments for acyclic discrete and continuous phase-type
distribution of second order.” I.J. of Simulation, vol. 3, no. 3–4, pp. 47–57, 2002.

[5] T. Osogami and M. Harchol, “Closed form solutions for mapping general distributions to
quasi-minimal ph distributions,” Performance Evaluation, 2006, to appear.

[6] A. Bobbio, A. Horvath, and M. Telek, “Matching three moments with minimal acyclic
phase type distributions,” Stochastic Models, vol. 21, pp. 303–326, 2005.

[7] J. Muppala, R. Fricks, and T. K., “Techniques for system dependability evaluation,” in
Computational Probability, W. Grassmann, Ed. Kluwer Academic Publishers, 2000.

[8] M. F. Neuts, Matrix-Geometrix Solutions in Stochastic Models. The John Hopkings Uni-
versity Press., 1981.

[9] D. Cox, “A use of complex probabilities in the theory of stochastic processes,” Proceedings
of the Cambridge Philosophical Society, vol. 51, pp. 313–319, 1955.

[10] M. A. Johnson and M. R. Taaffe, “Matching moments to phase type distributions: Nonlinear
programming approaches,” Comm. Statist. Stochastic Models, vol. 2, no. 6, pp. 259–281,
1990.

[11] C. A. O’Cinneide, “On nonuniqueness of representations of phase-type distributions,”
Comm. Statist. Stochastic Models, vol. 5, no. 2, pp. 247–259, 1989.

[12] M. Neuts and M. Pagano, “Generating random variates from a distribution of Phase-Type,”
in Proceedings of the Winter Simulation Conference, 1981.

[13] G. Latouche and V. Ramaswami, Introduction to matrix analytic methods in stochastic
modeling. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM),
1999.

[14] M. F. Neuts, “Two further closure properties of PH-distributions,” Asia-Pacific J. Oper.
Res., vol. 9, no. 1, pp. 77–85, 1992.

50

[15] Y. Fang and I. Chlamtac, “Teletraffic analysis and mobility modeling for pcs networks,”
IEEE Transactions on Communications, vol. 47, no. 7, pp. 1062–1072, 1999.

[16] A. Feldmann and W. Whitt, “Fitting mixtures of exponentials to long-tail distributions to
analyze network performance models,” Performance Evaluation. An international journal,
vol. 31, pp. 245–279, 1998.

[17] A. Horvath and M. Telek, “Approximating heavy-tailed behaviour with phase-type dis-
tributions,” in Advances in Algorithmic Methods for Stochastic Models, G. Latouche and
P. Taylor, Eds. Notable Publications, Inc, 2000, pp. 191–213.

[18] A. Lang and J. Arthur, “Parameter approximation for phase-type distributions,” in Matrix
Analytic methods in Stochastis Models, S. Chakravarty, Ed. Marcel Dekker, Inc., 1996.

[19] C. H. Sauer and K. M. Chandy, “Approximate analysis of central server models.” IBM
Journal of Research and Development, vol. 19, no. 3, pp. 301–313, 1975.

[20] R. Augustin and K. Büscher, “Characteristics of the cox-distribution,” ACM SIGMETRICS
Performance Evaluation Review, vol. 12, no. 1, pp. 22–32, 1982.

[21] M. A. Johnson and M. R. Taaffe, “Matching moments to phase distributions: mixtures of
Erlang distributions of common order,” Comm. Statist. Stochastic Models, vol. 5, no. 4, pp.
711–743, 1989.

[22] ——, “Matching moments to phase distributions: density function shapes,” Comm. Statist.
Stochastic Models, vol. 6, no. 2, pp. 283–306, 1990.

[23] ——, “An investigation of phase-distribution moment-matching algorithms for use in queue-
ing models,” Queueing Systems, vol. 8, pp. 129–147, 1991.

[24] M. A. Johnson, “Selecting parameters of phase distributions: combining nonlinear pro-
gramming, heuristics and erlang distributions,” ORSA Journal on Computing, vol. 5, pp.
69–83, 1993.

[25] L. Schmickler, “Meda: Mixed erlang distributions as phase-type representations of empirical
distribution functions,” Stochastic Models, vol. 8, pp. 131–156, 1992.

[26] T. Osogami and M. Harchol, “Necessary and sufficient conditions for representing general
distributions by coxians,” in Proceedings of the TOOLS 2003, 2003.

[27] ——, “A closed form solution for mapping general distributions to minimal ph distribu-
tions,” in Proceedings of the TOOLS 2003, 2003.

[28] A. Bobbio and A. Cumani, “ML estimation of the parameters of a PH distributions in
triangular canonical form,” in Computer Performance Evaluation, G. Balbo and G. Serazzi,
Eds. Elsevier Science Publishers, 1992, pp. 33–46.

[29] A. Bobbio and M. Telek, “A benchmark for ph estimation algorithms: results for acyclic-
ph,” Stochastic Models, vol. 10, pp. 661–667, 1994.

[30] A. Cumani, “On the canonical representation of homogeneous markov processes modeling
failure-time distributions,” Microelectronics and Reliability, vol. 22, no. 3, pp. 583–602,
1982.

51

[31] A. Dempster, N. Laird, and R. D.B., “Maximum likelihood from incomplete data via the
EM algorithm,” Journal of the Royal Statistical Society. Series B, vol. 39, pp. 1–38, 1977.

[32] A. Riska, V. Diev, and E. Smirni, “An em-based technique for approximating long-tailed
data sets with ph distributions,” Performance Evaluation, vol. 54, pp. 147–164, 2004.

[33] A. Bobbio, A. Horvath, M. Scarpa, and M. Telek, “Acyclic discrete phase type distributions:
properties and a parameter estimation algorithm,” Performance Evaluation, vol. 54, pp. 1–
32, 2003.

[34] B. Heimsund, “MTJ: Matrix toolkit for java,” http://rs.cipr.uib.no/mtj.

[35] A. Law and D. Kelton, Simulation, Modeling and Analysis. McGraw-Hill Higher Education,
2000.

[36] T. Gonzalez, S. Sahni, M. Neuts, and W. Franta, “An efficient algorithm for the kolmogorov-
smirnov and lilliefors tests,” ACM transactions on Mathematical Software, vol. 3, no. 1, pp.
60–64, 1977.

[37] C. Gourieroux and A. Monfort., Statistics and Econometric Models. Cambridge University
Press, 1995, vol. 1, ch. 13 - Numerical Procedures, pp. 443–491.

[38] D. Aldous and L. Shepp, “The least variable phase-type distribution is erlang,” Stochastic
Models, vol. 3, pp. 467–473, 1987.

[39] ACM SIGCOMM, “Internet traffic archive,” http://ita.ee.lbl.gov/index.html.

[40] M. Arlitt and C. Williamson, “Internet web servers workload characterization and perfor-
mance implications,” IEEE/ACM Transactions on Networking, vol. 5, no. 5, pp. 631–645,
1997.

[41] A. Mandelbaum, “Call center data,” http://iew3.technion.ac.il/serveng/callcenterdata.

52

