Show simple item record

dc.rights.licenseAl consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autoreses_CO
dc.contributor.authorPrada Malagón, Juan David
dc.contributor.otherReyes Lega, Andrés Fernando, director/asesor.es_CO
dc.contributor.otherBuitrago Aza, Nelson Javier, jurado/lector.es_CO
dc.date.accessioned2020-09-03T14:56:42Z
dc.date.available2020-09-03T14:56:42Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/1992/44613
dc.descriptionCon autorización de uso.es_CO
dc.description.abstractEn este trabajo se exponen las características principales de la teoría cuántica de campos en espacio-tiempo plano y en espacio-tiempo curvo enfocándose en la no unicidad del vacío. Este hecho involucra muchos detalles de la teoría que son la causa de que no exista una generalización simple y, por lo tanto, se observan diferencias en los fenómenos físicos desde cada una de las teorías. Dichas diferencias entre ambas teorías fueron estudiadas en el contexto del efecto Casimir con modificaciones tales como; cambios en la topología del espacio-tiempo, introducción de fronteras dinámicas, en un colapso gravitacional y para observadores con distintos tipos de movimiento en el espacio-tiempo. En el estudio del fenómeno físico se mostró que el valor esperado del tensor de energía-momento y el valor esperado del número de partículas en el vacío cambiaba cuando se introducían dichas modificaciones. En este orden de ideas, la investigación se orientó en la observación de los cambios en el observable del número de partículas en el vacío ya que este depende del movimiento acelerado y la curvatura del espacio-tiempo. En resumen, los cambios en el vacío introducen cambios en los observables del sistema físico, luego se puede pensar en relacionar dichos cambios con invariantes topológicos. Para tener un problema bien definido que busque solucionar la idea anterior cabe resaltar que los fenómenos físicos estudiados tienen un alto grado de universalidad y se pueden modelar como transiciones de fase cuánticas después de definir un parámetro de orden que va a hacer las veces de invariante topológico. Para un trabajo futuro, se van a presentar las herramientas matemáticas necesarias para resolver dicho problema en el contexto de sistemas fermiónicos y bosónicos. Se mencionan aspectos relacionados con las condiciones de vacío y su estrecha relación con estructuras complejas ortogonales, y se resaltan aspectos relevantes de las representaciones irreducibles de algebras CAR.es_CO
dc.description.abstractIn this work it is exposed the main characteristics of quantum field theory in flat spacetime and curved spacetime focusing on the non uniqueness of the vacuum state in the later theory. This fact involves many datails on the flat spacetime theory that can not be generalized in an easy way to curved spacetime. Therefore the observed physical phenomena looks quite different in both theories. Such differences between theories were studied in the context of the Casimir effect with several modifications: change in topology of spacetime, introduction of moving boundaries, in a gravitational collapse and in different types of motion for the observers on spacetime. In the study of the physical phenomena it was shown that the expec- tation value of the energy-momentum tensor and the expectation value of the number of particles on vacuum changes when introducing such modifications. The research di- rected mostly on the observation of changes on the observable of number of particles in vacuum as it depends directly on acceleration motion and spacetime curvature. In brief, changes on vacuum introduce changes on observables of the physical system. Therefore one would think about relating those observables with topological invariants. This, in order to have a well defined problem which aims to solve the latter idea. It is claimed that the physical phenomena studied have a great degree of universality and they can be modeled as quantum phase transitions by defining an order parameter which is going to be the topological invariant. As a first step for future work, some of the mathematical tools that are going to be needed in order to solve such a problem in the context of fermionic and bosonic systems are exposed. Aspects concerning the vacuum condition are mentioned and their close relation with orthogonal complex structures and irreducible representations of the CAR algebras are highlighted.es_CO
dc.formatapplication/pdfes_CO
dc.format.extent79 hojases_CO
dc.language.isoenges_CO
dc.publisherUniandeses_CO
dc.sourceinstname:Universidad de los Andeses_CO
dc.sourcereponame:Repositorio Institucional Sénecaes_CO
dc.titleQuantum fields with dynamical boundary conditionses_CO
dc.typeTrabajo de grado - Pregradoes_CO
dc.publisher.programFísicaes_CO
dc.rights.accessRightsopenAccess
dc.publisher.facultyFacultad de Cienciases_CO
dc.publisher.departmentDepartamento de Físicaes_CO
dc.subject.armarcTeoría del campo cuántico - Investigacioneses_CO
dc.subject.armarcEfecto casimir - Investigacioneses_CO
dc.type.versionpublishedVersion
dc.description.degreenameFísicoes_CO
dc.description.degreelevelPregradoes_CO


Files in this item

Thumbnail

Name: u830764.pdf

This item appears in the following Collection(s)

Show simple item record