Mostrar el registro sencillo del ítem

dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 Internacionalspa
dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 Internacionalspa
dc.contributor.advisorQuijano Silva, Nicanor 
dc.contributor.authorSandoval Carranza, María Alejandra
dc.description.abstractEste trabajo revisa un modelo de cáncer basado en la dinámica evolutiva de los juegos de población. En concreto, analizamos dos modelos de cáncer, para determinar cuál se asemeja más a la realidad, y con éste, proponer una terapia basada en la dinámica de replicadores. También realizamos un análisis de sensibilidad de los modelos para determinar y comparar cambios específicos. El análisis de sensibilidad de los parámetros, así como nuestra propuesta, se representan mediante simulaciones numéricas. Por último, nuestro método propuesto genera una terapia a lo largo del tiempo, en función de las densidades.
dc.description.abstractThis paper reviews a cancer model based on the evolutionary dynamics of population games. In particular, we analyze two models of cancer, to determine which one resembles reality the most, and with this one, propose a therapy based on replicator dynamics. We also perform a sensitivity analysis of the models to determine and compare specific changes. The sensitivity analysis of the parameters, as well as our proposal, are represented by numerical simulations. Finally, our proposed method generates therapy over time, depending on densities.
dc.format.extent17 páginases_CO
dc.publisherUniversidad de los Andeses_CO
dc.titleAnalysis of two cancer models with a proposed therapy based on replicator dynamics
dc.title.alternativeAnálisis de dos modelos de cáncer con una propuesta de terapia basada en la dinámica del replicador
dc.typeTrabajo de grado - Maestríaes_CO
dc.publisher.programMaestría en Ingeniería Electrónica y de Computadoreses_CO
dc.subject.keywordTeoría de juegos
dc.subject.keywordDinámicas del replicador
dc.subject.keywordAnálisis de sensibilidad
dc.subject.keywordDiagramas de fase
dc.publisher.facultyFacultad de Ingenieríaes_CO
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaes_CO
dc.contributor.juryGiraldo Trujillo, Luis Felipe
dc.contributor.juryGarcía Tenorio, Camilo
dc.description.degreenameMagíster en Ingeniería Electrónica y de Computadoreses_CO
dc.description.researchareaControl en sistemas Biológicos.es_CO
dc.identifier.instnameinstname:Universidad de los Andeses_CO
dc.identifier.reponamereponame:Repositorio Institucional Sénecaes_CO
dc.relation.referencesR. A. Weinberg, The biology of cancer. Garland Science, 2007.es_CO
dc.relation.referencesP. J. Campbell and GBD-Collaborators, Pan-cancer analysis of whole genomes, Nature, vol. 578, pp. 82-93, Feb 2020.es_CO
dc.relation.referencesP. M. Enriquez-Navas and R. A. Gatenby, 28 - evolutionary strategies to overcome cancer cell resistance to treatment, in Phenotypic Switching (H. Levine, M. K. Jolly, P. Kulkarni, and V. Nan- jundiah, eds.), pp. 691-703, Academic Press, 2020.es_CO
dc.relation.referencesJ.-P. Capp, Cancer stem cells: From historical roots to a new perspective, Journal of Oncology, vol. 2019, p. 5189232, Jun 2019.es_CO
dc.relation.referencesA. Dujon, A. Aktipis, C. Alix-Panabi`eres, S. Amend, A. Boddy, J. Brown, J.-P. Capp, J. DeGregori, P. Ewald, R. Gatenby, F. Thomas, and B. Ujvari, Identifying key questions in the ecology and evolution of cancer, Evolutionary Applications, vol. 14, pp. 877-892, 2021.es_CO
dc.relation.referencesR. A. Beckman, I. Kareva, and F. R. Adler, How should cancer models be constructed, Cancer Control, vol. 27, no. 1, p. 1073274820962008, 2020.es_CO
dc.relation.referencesA. Oroji, M. Omar, and S. Yarahmadian, An to stochastic differential equations model for the dynamics of the mcf-7 breast cancer cell line treated by radiotherapy, Journal of Theoretical Biology, vol. 407, pp. 128-137, 2016.es_CO
dc.relation.referencesS. Park, A. Bizyaeva, M. Kawakatsu, A. Franci, and N. E. Leonard, Tuning cooperative behavior in games with nonlinear opinion dynamics, 2021.es_CO
dc.relation.referencesJ. West, Y. Ma, and P. K. Newton, Capitalizing on competition: An evolutionary model of com- petitive release in metastatic castration resistant prostate cancer treatment, Journal of Theoretical Biology, vol. 455, pp. 249-260, 2018.es_CO
dc.relation.referencesJ. J. Cunningham, J. S. Brown, R. A. Gatenby, and K. Stankov a, Optimal control to develop ther- apeutic strategies for metastatic castrate resistant prostate cancer, Journal of Theoretical Biology, vol. 459, pp. 67-78, 2018.es_CO
dc.relation.referencesJ. Salimi Sartakhti, M. H. Manshaei, and M. Sadeghi, Mmptimp interactions in cancer invasion: An evolutionary game-theoretical framework, Journal of Theoretical Biology, vol. 412, pp. 17-26, 2017.es_CO
dc.relation.referencesL. You, J. S. Brown, F. Thuijsman, J. J. Cunningham, R. A. Gatenby, J. Zhang, and K. Stankov a, Spatial vs. non-spatial eco-evolutionary dynamics in a tumor growth model, Journal of Theoretical Biology, vol. 435, pp. 78-97, 2017.es_CO
dc.relation.referencesN. Laleh, C. Loeffler, J. Grajek, K. Stankov a, A. Pearson, H. Muti, C. Trautwein, H. Enderling, J. Poleszczuk, and J. Kather, Classical mathematical models for prediction of response to chemother-apy and immunotherapy, PLoS Computational Biology, vol. 18, no. 2, 2022.es_CO
dc.relation.referencesD. A. Deenen, B. Maljaars, L. C. Sebeke, B. de Jager, E. Heijman, H. Gr ull, and W. P. M. H. Heemels, Offset-free model predictive temperature control for ultrasound-based hyperthermia cancer treatments, IEEE Transactions on Control Systems Technology, vol. 29, no. 6, pp. 23512365, 2021.es_CO
dc.relation.referencesH. Khadem, H. Kebriaei, and Z. Veisi, Inactivation of tumor suppressor genes and cancer therapy: An evolutionary game theory approach, Mathematical Biosciences, vol. 288, pp. 84-93, 2017.es_CO
dc.relation.referencesB. W olfl, H. te Rietmole, M. Salvioli, A. Kaznatcheev, F. Thuijsman, J. Brown, B. Burgering, and K. Stankov The contribution of evolutionary game theory to understanding and treating cancer, Dynamic Games and Applications, 2021.es_CO
dc.relation.referencesI. Kareva, Prisoner's dilemma in cancer metabolism, PLOS ONE, vol. 6, pp. 1-9, 12 2011.es_CO
dc.relation.referencesJ. J. Cunningham, R. A. Gatenby, and J. S. Brown, Evolutionary dynamics in cancer therapy, Molecular Pharmaceutics, vol. 8, pp. 2094-2100, Aug. 2011.es_CO
dc.relation.referencesJ. S. Brown, Why darwin would have loved evolutionary game theory, Proceedings of the Royal Society B: Biological Sciences, vol. 283, Sept. 2016.es_CO
dc.relation.referencesJ. West, Z. Hasnain, J. Mason, and P. K. Newton, The prisoner's dilemma as a cancer model, Convergent Science Physical Oncology, vol. 2, July 2016.es_CO
dc.relation.referencesR. Axelrod, D. E. Axelrod, and K. J. Pienta, Evolution of cooperation among tumor cells, Proceedings of the National Academy of Sciences, vol. 103, no. 36, pp. 13474-13479, 2006.es_CO
dc.relation.referencesM. Archetti and K. J. Pienta, Cooperation among cancer cells: applying game theory to cancer, Nature Reviews Cancer, vol. 19, pp. 114-117, Feb. 2019.es_CO
dc.relation.referencesI. P. Tomlinson, Game-theory models of interactions between tumour cells, European Journal of Cancer, vol. 33, pp. 1495-1500, Aug. 1997.es_CO
dc.relation.referencesP. Bayer, R. Gatenby, P. McDonald, D. Duckett, K. Sta¿nkov a, and J. Brown, Coordination games in cancer, PLoS ONE, vol. 17, 2022.es_CO
dc.relation.referencesT. L. Vincent and J. S. Brown, Evolutionary Game Theory, Natural Selection, and Darwinian Dy- namics. Cambridge University Press, 2005.es_CO
dc.relation.referencesS. Park, N. Martins, and J. Shamma, From population games to payoff dynamics models: A passivity-based approach, vol. Proceedings of the 2019 IEEE Conference on Decision and Control - December, pp. 6584-6601, 2019.es_CO
dc.relation.referencesW. H. Sandholm, Population games and evolutionary dynamics. Economic learning and social evo- lution, MIT Press, 2010.es_CO
dc.relation.referencesJ. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics. Cambridge University Press, 1998.es_CO
dc.relation.referencesV. Krivan, T. E. Galanthay, and R. Cressman, Beyond replicator dynamics: From frequency to density dependent models of evolutionary games, Journal of Theoretical Biology, vol. 455, pp. 232- 248, 2018.es_CO
dc.relation.referencesG. J. Kimmel, P. Gerlee, J. S. Brown, and P. M. Altrock, Neighborhood size-effects shape growing population dynamics in evolutionary public goods games, Communications Biology, vol. 2, p. 53, Feb 2019.es_CO
dc.relation.referencesR. A. Gatenby and T. L. Vincent, Application of quantitative models from population biology and evolutionary game theory to tumor therapeutic strategies, Mol Cancer Ther, vol. 2, pp. 919-927, Sept. 2003.es_CO
dc.relation.referencesP. D. Taylor and L. B. Jonker, Evolutionarily stable strategies and game dynamics, Bellman Prize in Mathematical Biosciences, vol. 40, pp. 145-156, 1978.es_CO
dc.relation.referencesI. Samokhin, T. Yakushkina, D. Markin, and A. S. Bratus, Fitness landscape adaptation in open replicator systems with competition: application to cancer therapy, 2021.es_CO
dc.relation.referencesE. Angulo, G. W. Roemer, L. Berec, J. Gascoigne, and F. Courchamp, Double allee effects and extinction in the island fox,¿ Conserv Biol, vol. 21, pp. 1082-1091, Aug. 2007.es_CO
dc.relation.referencesM. A. Smith, C. B. Nielsen, F. C. Chan, A. McPherson, A. Roth, H. Farahani, D. Machev, A. Steif, and S. P. Shah, E-scape: interactive visualization of single-cell phylogenetics and cancer evolution, Nature Methods, vol. 14, pp. 549-550, Jun 2017.es_CO

Ficheros en el ítem


Nombre: Tesis2_ma_sandoval.pdf

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem