Mostrar el registro sencillo del ítem

dc.contributor.advisorGamba Sánchez, Diego Alexander 
dc.contributor.authorMahecha Mahecha, Camilo Andres
dc.date.accessioned2022-07-29T19:48:25Z
dc.date.available2022-07-29T19:48:25Z
dc.date.issued2022-07-22
dc.identifier.urihttp://hdl.handle.net/1992/59375
dc.description.abstractEste documento presenta los resultados experimentales más relevantes de la investigación realizada en el Laboratorio de Síntesis Orgánica, Bio y Organocatálisis del Departamento de Química de la Universidad de los Andes bajo la dirección del Dr. Diego Alexander Gamba Sánchez como tesis doctoral, cuyo objetivo general fue la síntesis de derivados de tipo 2-bencilbenzofurano, y algunos derivados de naftaleno y fenantreno que se caracterizan por tener actividad frente a canales de potasio TASK-3, considerados como oncogenes presentes en diferentes tipos de células cancerígenas . El documento se ha dividido en 5 capítulos; el primero de ellos describe la importancia de los canales de potasio TASK-3, las consideraciones tenidas en cuenta para el diseño de las moléculas objetivo, y el planteamiento general de la estrategia sintética propuesta. En el segundo capítulo se presentan inicialmente las principales metodologías existentes para la síntesis de 2-alquilbenzofuranos, continuando con los resultados obtenidos tras la aplicación de la ruta de síntesis planteada para esta investigación, así como propuestas alternativas encaminadas hacia la obtención enantioselectiva de los productos en cuestión y sus respectivos resultados. El tercer capítulo aborda los resultados obtenidos en conjunto con el grupo del profesor Sebastien Thiabudeau de la Universidad de Poitiers. En este se planteó el desarrollo de una ruta sintética para la obtención de unos precursores sobre los cuales se evaluó una reacción de ciclación que dio lugar a la generación de derivados de naftaleno y fenantreno. En el cuarto capítulo se retoman los resultados parciales de la aplicación de la reacción de Pummerer como estrategia de ciclación para la obtención del núcleo benzofuránico; a partir de dichas observaciones se diseñó y desarrolló una metodología enfocada hacia la reducción de sulfóxidos con un amplio campo de acción. Finalmente, la última sección corresponde a la parte experimental del trabajo, incluyendo una descripción de los procedimientos empleados y la información correspondiente a la caracterización de los productos sintetizados.
dc.format.extent276 páginases_CO
dc.format.mimetypeapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de los Andeses_CO
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.titleSíntesis y funcionalización de (hetero)árenos mediante reacciones catalizadas por paladio o reducción de sulfóxidos: un enfoque hacia la obtención de 2-alquilbenzofuranos y otras moléculas de interés biológico
dc.typeTrabajo de grado - Doctoradoes_CO
dc.publisher.programDoctorado en Ciencias - Químicaes_CO
dc.subject.keyword2-alquilbenzofuranos
dc.subject.keywordAntraceno
dc.subject.keywordModuladores de canales de potasio
dc.subject.keywordFenantreno
dc.subject.keywordReducción de sulfóxidos
dc.publisher.facultyFacultad de Cienciases_CO
dc.publisher.departmentDepartamento de Químicaes_CO
dc.contributor.juryPortilla Salinas, Jaime Antonio
dc.contributor.juryAbonía González, Rodrigo
dc.contributor.juryQuiroga Daza, Diego Enrique
dc.contributor.juryRamírez Sánchez, David Mauricio
dc.contributor.juryPérez, Edwin G.
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.description.degreenameDoctor en Ciencias - Químicaes_CO
dc.description.degreelevelDoctoradoes_CO
dc.contributor.researchgroupLaboratorio de síntesis orgánica bio y organocatálisises_CO
dc.description.researchareaSíntesis orgánica y desarrollo de metodologíases_CO
dc.identifier.instnameinstname:Universidad de los Andeses_CO
dc.identifier.reponamereponame:Repositorio Institucional Sénecaes_CO
dc.identifier.repourlrepourl:https://repositorio.uniandes.edu.co/es_CO
dc.relation.references1. Doyle Declan, A.; Cabral João, M.; Pfuetzner Richard, A.; Kuo, A.; Gulbis Jacqueline, M.; Cohen Steven, L.; Chait Brian, T.; MacKinnon, R., The Structure of the Potassium Channel: Molecular Basis of K+ Conduction and Selectivity. Science. 1998, 280 (5360), 69-77.es_CO
dc.relation.references2. Meadows, H. J.; Randall, A. D., Functional characterisation of human TASK-3, an acid-sensitive two-pore domain potassium channel. Neuropharmacology. 2001, 40 (4), 551-559.es_CO
dc.relation.references3. Bardou, O.; Thu, N.; Trinh, N.; Brochiero, E., Molecular diversity and function of K+ channels in airway and alveolar epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2009, 296 (2), 145-155.es_CO
dc.relation.references4. Mathie, A.; Veale, In Encyclopedia of Neuroscience, 2009; pp 2792-2797.es_CO
dc.relation.references5. Coetzee, W. A.; Amarillo, Y.; Chiu, J.; Chow, A.; Lau, D.; McCormack, T. O. M.; Morena, H.; Nadal, M. S.; Ozaita, A.; Pountney, D.; Saganich, M.; De Miera, E. V.-S.; Rudy, B., Molecular Diversity of K+ Channels. Ann. N. Y. Acad. Sci. 1999, 868 (1), 233-255.es_CO
dc.relation.references6. Talley, E. M.; Bayliss, D. A., Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels. Volatile anesthetics and neurotransmitters share a molecular site of action. J. Biol. Chem. 2002, 277 (20), 17733-17742.es_CO
dc.relation.references7. Mu, D.; Chen, L.; Zhang, X.; See, L.-H.; Koch, C. M.; Yen, C.; Tong, J. J.; Spiegel, L.; Nguyen, K. C. Q.; Servoss, A.; Peng, Y.; Pei, L.; Marks, J. R.; Lowe, S.; Hoey, T.; Jan, L. Y.; McCombie, W. R.; Wigler, M. H.; Powers, S., Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell 2003, 3 (3), 297-302.es_CO
dc.relation.references8. Innamaa, A.; Jackson, L.; Asher, V.; Van Schalkwyk, G.; Warren, A.; Keightley, A.; Hay, D.; Bali, A.; Sowter, H.; Khan, R., Expression and effects of modulation of the K2P potassium channels TREK-1 (KCNK2) and TREK-2 (KCNK10) in the normal human ovary and epithelial ovarian cancer. Am. J. Clin. 2013, 15 (11), 910-918.es_CO
dc.relation.references9. Zúñiga, R.; Concha, G.; Cayo, A.; Cikutovic-Molina, R.; Arevalo, B.; González, W.; Catalán, M. A.; Zúñiga, L., Withaferin A suppresses breast cancer cell proliferation by inhibition of the two-pore domain potassium (K2P9) channel TASK-3. Biomed. Pharmacother. 2020, 129, 110383.es_CO
dc.relation.references10. Pocsai, K.; Kosztka, L.; Bakondi, G.; Gönczi, M.; Fodor, J.; Dienes, B.; Szentesi, P.; Kovács, I.; Feniger-Barish, R.; Kopf, E.; Zharhary, D.; Szucs, G.; Csernoch, L.; Rusznák, Z., Melanoma cells exhibit strong intracellular TASK-3-specific immunopositivity in both tissue sections and cell culture. Cell Mol Life Sci. 2006, 63 (19-20), 2364-2376.es_CO
dc.relation.references11. Philip, B.; Ito, K.; Moreno-Sánchez, R.; Ralph, S. J., HIF expression and the role of hypoxic microenvironments within primary tumours as protective sites driving cancer stem cell renewal and metastatic progression. Carcinogenesis. 2013, 34 (8), 1699-1707.es_CO
dc.relation.references12. Bertout, J. A.; Patel, S. A.; Simon, M. C., The impact of O2 availability on human cancer. Nat. Rev. Cancer. 2008, 8 (12), 967-75.es_CO
dc.relation.references13. Cikutovíc-Molina, R.; Herrada, A. A.; González, W.; Brown, N.; Zúñiga, L., TASK-3 gene knockdown dampens invasion and migration and promotes apoptosis in KATO III and MKN-45 human gastric adenocarcinoma cell lines. Int. J. Mol. Sci. 2019, 20 (23), 6077.es_CO
dc.relation.references14. Toczylowska-Maminska, R.; Olszewska, A.; Laskowski, M.; Bednarczyk, P.; Skowronek, K.; Szewczyk, A., Potassium channel in the mitochondria of human keratinocytes. JID. 2014, 134 (3), 764-772.es_CO
dc.relation.references15. Rusznák, Z.; Bakondi, G.; Kosztka, L.; Pocsai, K.; Dienes, B.; Fodor, J.; Telek, A.; Gönczi, M.; Szucs, G.; Csernoch, L., Mitochondrial expression of the two-pore domain TASK-3 channels in malignantly transformed and non-malignant human cells. Virchows Archiv. 2008, 452 (4), 415-426.es_CO
dc.relation.references16. Pei, L.; Wiser, O.; Slavin, A.; Mu, D.; Powers, S.; Jan, L. Y.; Hoey, T., Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function. Proc Natl Acad Sci U S A. 2003, 100 (13), 7803-7807.es_CO
dc.relation.references17. Cunningham, K. P.; MacIntyre, D. E.; Mathie, A.; Veale, E. L., Effects of the ventilatory stimulant, doxapram on human TASK-3 (KCNK9, K2P9.1) channels and TASK-1 (KCNK3, K2P3.1) Acta Physiol. Scand. 2020, 228 (2).es_CO
dc.relation.references18. Bruner, J. K.; Zou, B.; Zhang, H.; Zhang, Y.; Schmidt, K.; Li, M., Identification of novel small molecule modulators of K2P18.1 two-pore potassium channel. Eur J Pharmacol. 2014, 740, 603-603.es_CO
dc.relation.references19. Cotten, J. F., TASK-1 (KCNK3) and TASK-3 (KCNK9) tandem pore potassium channel antagonists stimulate breathing in isoflurane-anesthetized rats. Anesth Analg 2013, 116 (4), 810-816.es_CO
dc.relation.references20. Czirják, G.; Enyedi, P., Ruthenium Red Inhibits TASK-3 Potassium Channel by Interconnecting Glutamate 70 of the Two Subunits. Mol. Pharmacol. 2003, 63 (3), 646.es_CO
dc.relation.references21. Piechotta, P. L.; Rapedius, M.; Stansfeld, P. J.; Bollepalli, M. K.; Erhlich, G.; Andres-Enguix, I.; Fritzenschaft, H.; Decher, N.; Sansom, M. S. P.; Tucker, S. J.; Baukrowitz, T., The pore structure and gating mechanism of K2P channels. EMBO J. 2011, 30 (17), 3607-3619.es_CO
dc.relation.references22. Concha, G.; Bustos, D.; Zúñiga, R.; Catalán, M. A.; Zúñiga, L., The Insensitivity of TASK-3 K2P Channels to External Tetraethylammonium (TEA) Partially Depends on the Cap Structure. Int. J. Mol. Sci. 2018, 19 (8), 2437.es_CO
dc.relation.references23. Huang, X.; Jan, L. Y., Targeting potassium channels in cancer. J Cell Biol. 2014, 206 (2), 151-162.es_CO
dc.relation.references24. Ramírez, D.; Concha, G.; Arévalo, B.; Prent-Peñaloza, L.; Zúñiga, L.; Kiper, A. K.; Rinné, S.; Reyes-Parada, M.; Decher, N.; González, W.; Caballero, J., Discovery of novel TASK-3 channel blockers using a pharmacophore-based virtual screening. Int. J. Mol. Sci. 2019, 20 (16), 4014.es_CO
dc.relation.references25. Fiser, A.; Sali, A., Modeller: Generation and Refinement of Homology-Based Protein Structure Models. In Methods in Enzymology, AP. 2003; Vol. 374, pp 461-491.es_CO
dc.relation.references26. Brohawn, S. G.; del Mármol, J.; MacKinnon, R., Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science (New York, N.Y.) 2012, 335 (6067), 436-441.es_CO
dc.relation.references27. Coburn, C. A.; Luo, Y.; Cui, M.; Wang, J.; Soll, R.; Dong, J.; Hu, B.; Lyon, M. A.; Santarelli, V. P.; Kraus, R. L.; Gregan, Y.; Wang, Y.; Fox, S. V.; Binns, J.; Doran, S. M.; Reiss, D. R.; Tannenbaum, P. L.; Gotter, A. L.; Meinke, P. T.; Renger, J. J., Discovery of a pharmacologically active antagonist of the two-pore-domain potassium channel K 2P9.1 (TASK-3). ChemMedChem. 2012, 7 (1), 123-133.es_CO
dc.relation.references28. Bruner, J. K.; Zou, B.; Zhang, H.; Zhang, Y.; Schmidt, K.; Li, M., Identification of novel small molecule modulators of K2P18.1 two-pore potassium channel. Eur. J. Pharmacol. 2014, 740, 603-610.es_CO
dc.relation.references29. Sandhu, M. S.; Lee, K. Z.; Gonzalez-Rothi, E. J.; Fuller, D. D., Repeated intravenous doxapram induces phrenic motor facilitation. Exp. Neurol. 2013, 250, 108-115.es_CO
dc.relation.references30. Dixon, S. L.; Smondyrev, A. M.; Rao, S. N., PHASE: A novel approach to pharmacophore modeling and 3D database searching. In Chem Biol Drug Des, 2006; 67, 370-372.es_CO
dc.relation.references31. Hughes, J. P.; Rees, S. S.; Kalindjian, S. B.; Philpott, K. L., Principles of early drug discovery. Br. J. Pharmacol. 2011, 162 (6), 1239-1249.es_CO
dc.relation.references32. Horton, D. A.; Bourne, G. T.; Smythe, M. L., The Combinatorial Synthesis of Bicyclic Privileged Structures or Privileged Substructures. Chem. Rev. 2003, 103 (3), 893-930.es_CO
dc.relation.references33. Rangaswamy, J.; Vijay Kumar, H.; Harini, S. T.; Naik, N., Synthesis of benzofuran based 1,3,5-substituted pyrazole derivatives: As a new class of potent antioxidants and antimicrobials-A novel accost to amend biocompatibility. Bioorg. Med. Chem. Lett. 2012,22 (14), 4773-4777.es_CO
dc.relation.references34. More, K. R., Review on Synthetic Routes for Synthesis of Benzofuran-Based Compounds. J. chem. pharm. 2007, 9 (5), 210-220.es_CO
dc.relation.references35. Kim, K. O.; Tae, J., Synthesis of 2,3-Disubstituted benzofurans from ortho-acylphenols. Synthesis. 2005, 2005, 387-390.es_CO
dc.relation.references36. Enholm, E. J.; Prasad, G., Tributyltin hydride-induced O-stannyl ketyls in the cyclization of aldehydes and ketones with alkenes. Tetrahedron Lett. 1989, 30 (37), 4939-4942.es_CO
dc.relation.references37. Fang, Y.; Li, C., O-Arylation versus C-Arylation: Copper-Catalyzed Intramolecular Coupling of Aryl Bromides with 1,3-Dicarbonyls. J. Org. Chem. 2006, 71 (17), 6427-6431.es_CO
dc.relation.references38. Gabriele, B.; Mancuso, R.; Salerno, G.; Costa, M., Cascade Reactions: Sequential Homobimetallic Catalysis Leading to Benzofurans and Unsaturated Esters. ASC. 2006, 348, 1101-1109.es_CO
dc.relation.references39. Hofbeck, T.; Yersin, H., The Triplet State of fac-Ir(ppy)3. Inorg. 2010, 49 (20), 9290-9299.es_CO
dc.relation.references40. Ramella, V.; He, Z.; Daniliuc, C. G.; Studer, A., Palladium-Catalyzed Dearomatizing Difunctionalization of Indoles and Benzofurans. Eur. J. Org. Chem. 2016, 2016 (13), 2268-2273.es_CO
dc.relation.references41. Nakatani, A.; Hirano, K.; Satoh, T.; Miura, M. C., Nickel-catalyzed direct alkylation of heterocycles with ±-bromo carbonyl compounds: C3-selective functionalization of 2-pyridones. Chemistry - Chem. Eur. J. 2013, 19 (24), 7691-7695.es_CO
dc.relation.references42. Yamane, Y.; Yoshinaga, K.; Sumimoto, M.; Nishikata, T., Iron-Enhanced Reactivity of Radicals Enables C-H Tertiary Alkylations for Construction of Functionalized Quaternary Carbons. ACS Catal. 2019, 9 (3), 1757-1762.es_CO
dc.relation.references43. Tian, W.; Li, B.; Tian, D.; Tang, W., Regioselective 2-alkylation of indoles with a-bromo esters catalyzed by Pd/P,P=O system. Chin. Chem. Lett. 2022, 33 (1), 197-200.es_CO
dc.relation.references44. Chakravarty, M.; Kumara Swamy, K. C., Palladium-Catalyzed Coupling of Allenylphosphonates, Phenylallenes, and Allenyl Esters: Remarkable Salt Effect and Routes to Novel Benzofurans and Isocoumarins. J. Org. Chem. 2006, 71 (24), 9128-9138.es_CO
dc.relation.references45. Katritzky, A. R.; Fali, C. N.; Li, J., General Synthesis of Polysubstituted Benzo[b]furans. J. Org. Chem. 1997, 62 (23), 8205-8209.es_CO
dc.relation.references46. Mandali, P. K.; Chand, D. K., Palladium Nanoparticles Catalyzed Synthesis of Benzofurans by a Domino Approach. Synthesis. 2015, 47 (11), 1661-1668.es_CO
dc.relation.references47. Yang, O.-K.; Kim, J.-E.; Park, H. J., Synthesis of 2-Substituted Benzofurans from o-Iodophenols and Terminal Alkynes with a Recyclable Palladium Catalyst Supported on Nano-sized Carbon Balls under Copper- and Ligand-Free Conditions. BKCS. 2013, 34 (9), 2645-2649.es_CO
dc.relation.references48. Cano, R.; Yus, M.; Ramón, D. J., Impregnated copper or palladium-copper on magnetite as catalysts for the domino and stepwise Sonogashira-cyclization processes: a straightforward synthesis of benzo[b]furans and indoles. Tetrahedron Lett. 2012, 68 (5), 1393-1400.es_CO
dc.relation.references49. Banerjee, T. S.; Paul, S.; Sinha, S.; Das, S., Synthesis of iboga-like isoquinuclidines: Dual opioid receptors agonists having antinociceptive properties. Bioorg. Med. Chem. 2014, 22 (21), 6062-6070.es_CO
dc.relation.references50. Gu, Z.-S.; Zhou, A.-n.; Xiao, Y.; Zhang, Q.-W.; Li, J.-Q., Synthesis and antidepressant-like activity of novel aralkyl piperazine derivatives targeting SSRI/5-HT1A/5-HT7. Eur. J. Med. Chem. 2018, 144, 701-715.es_CO
dc.relation.references51. Wagner, R. B.; Tome, J. M., Derivatives of Benzofuran. J. Am. Chem. Soc. 1950, 72 (8), 3477-3478.es_CO
dc.relation.references52. Meng, Q.-Y.; Schirmer, T. E.; Berger, A. L.; Donabauer, K.; König, B., Photocarboxylation of Benzylic C-H Bonds. J. Am. Chem. Soc. 2019, 141 (29), 11393-11397.es_CO
dc.relation.references53. Ghosh, S.; Das, J.; Saikh, F., A new synthesis of 2-aryl/alkylbenzofurans by visible light stimulated intermolecular Sonogashira coupling and cyclization reaction in water. Tetrahedron Lett. 2012, 53 (44), 5883-5886.es_CO
dc.relation.references54. Liu, J.; Zhou, X.; Wang, C.; Fu, W.; Chu, W.; Sun, Z., Total synthesis of protosappanin A and its derivatives via palladium catalyzed ortho C-H activation/C-C cyclization under microwave irradiation. ChemComms. 2016, 52 (29), 5152-5155.es_CO
dc.relation.references55. Vondervoort, L. S.-v. d.; Bouttemy, S.; Padrón, J. M.; Bras, J. L.; Muzart, J.; Alsters, P. L., Chromium Catalyzed Oxidation of (Homo-)Allylic and (Homo-)Propargylic Alcohols with Sodium Periodate to Ketones or Carboxylic Acids. ChemInform. 2002, 33, 243-246.es_CO
dc.relation.references56. Moumne, R.; Lavielle, S.; Karoyan, P., Efficient Synthesis of B2-Amino Acid by Homologation of a-Amino Acids Involving the Reformatsky Reaction and Mannich-Type Imminium Electrophile. J. Org. Chem. 2006, 71 (8), 3332-3334.es_CO
dc.relation.references57. Fischer, E.; Speier, A., Darstellung der Ester. Ber. Dtsch. Chem. Ges 1895, 28 (3), 3252-3258.es_CO
dc.relation.references58. Sheehan, J. C.; Hess, G. P., A New Method of Forming Peptide Bonds. J. Am. Chem. Soc. 1955, 77 (4), 1067-1068.es_CO
dc.relation.references59. Pagoti, S.; Dutta, D.; Dash, J., A Magnetoclick Imidazolidinone Nanocatalyst for Asymmetric 1,3-Dipolar Cycloadditions. ASC. 2013,355 (18), 3532-3538.es_CO
dc.relation.references60. Martínez, C.; Aurrecoechea, J. M.; Madich, Y.; Denis, J. G.; de Lera, A. R.; Álvarez, R., Synthesis of Tetrahydrodibenzofuran and Tetrahydrophenanthridinone Skeletons by Intramolecular Nucleopalladation/ Oxidative Heck Cascades. Eur. J. Org. Chem. 2012, 2012 (1), 99-106.es_CO
dc.relation.references61. Chinchilla, R.; Nájera, C., The Sonogashira Reaction: A Booming Methodology in Synthetic Organic Chemistry. Chem. Rev. 2007, 107 (3), 874-922.es_CO
dc.relation.references62. Jutand, A.; Négri, S.; Principaud, A., Formation of ArPdXL(amine) Complexes by Substitution of One Phosphane Ligand by an Amine in trans-ArPdX(PPh3)2 Complexes. Eur. J. Inorg. Chem. 2005, 2005 (4), 631-635.es_CO
dc.relation.references63. Snider, B. B.; Spindell, D. K., Lewis acid catalyzed [2 + 2] cycloaddition of methyl 2,3-butadienoate to alkenes. J. Org. Chem. 1980, 45 (25), 5017-5020.es_CO
dc.relation.references64. Crombie, L.; Jenkins, P. A.; Mitchard, D. A., Heterogeneous catalytic hydrogenation of allenes over supported palladium: selectivity, stereoselectivity, and regioselectivity. J. Chem. Soc., Perkin Trans. 1 1975, (12), 1081-1090.es_CO
dc.relation.references65. Matsushita, K.; Suzuki, K.; Ohmori, K., Total Syntheses of Atrovenetin and Atrovenetinone: A Naphthalene-Annulation Approach to a Discoid Tricycle Using Allenic Acid. Synlett. 2017, 28 (8), 944-950.es_CO
dc.relation.references66. An, G.-i.; Ahn, H.; Castro, K. A. D.; Rhee, H., Pd/C and NaBH4 inBasic Aqueous Alcohol: An Efficient System for an EnvironmentallyBenign Oxidation of Alcohols. Synthesis. 2010, 2010 (3), 477-485.es_CO
dc.relation.references67. Leivers, M.; Miller, J. F.; Chan, S. A.; Lauchli, R.; Liehr, S.; Mo, W.; Ton, T.; Turner, E. M.; Youngman, M.; Falls, J. G.; Long, S.; Mathis, A.; Walker, J., Imidazopyridazine Hepatitis C Virus Polymerase Inhibitors. Structure Activity Relationship Studies and the Discovery of a Novel, Traceless Prodrug Mechanism. J. Med. Chem. 2014, 57 (5), 1964-1975.es_CO
dc.relation.references68. Smith, A. B.; Toder, B. H.; Branca, S. J.; Dieter, R. K., Lewis acid promoted decomposition of unsaturated .alpha.-diazo ketones. 1. An efficient approach to simple and annulated cyclopentenones. J. Am. Chem. Soc. 1981, 103 (8), 1996-2008.es_CO
dc.relation.references69. Snajdr, I.; Froese, J.; Dudding, T.; Horáková, P.; Hudlický, T., Investigation of a new chiral auxiliary derived chemoenzymatically from toluene: experimental and computational study. Can. J. Chem. 2016, 94 (10), 848-856.es_CO
dc.relation.references70. Tanaka, F.; Node, M.; Tanaka, K.; Mizuchi, M.; Hosoi, S.; Nakayama, M.; Taga, T.; Fuji, K., 1,1'-Binaphthalene-2,2'-diol as a Chiral Auxiliary. Diastereoselective Alkylation of Binaphthyl Esters, Complex-Induced Proximity Effects in Enolate Formation, and One-Step Synthesis of an Optically Active beta-Substituted Ketone. J. Am. Chem. Soc. 1995, 117 (49), 12159-12171.es_CO
dc.relation.references71. Fuji, K.; Node, M.; Tanaka, F., Complex-induced proximity effects in enolate formation. Highly diastereoselective a-methylation of binaphthyl esters of arylacetic acids. Tetrahedron Lett. 1990, 31 (45), 6553-6556.es_CO
dc.relation.references72. Fuji, K.; Node, M.; Tanaka, F.; Hosoi, S., Binaphthol as a chiral auxiliary. Asymmetrical alkylation of arylacetic acid. Tetrahedron Lett. 1989, 30 (21), 2825-2828.es_CO
dc.relation.references73. Yamazaki, J.; Watanabe, T.; Tanaka, K., Enantioselective synthesis of allenecarboxylates from phenyl acetates through C=C bond forming reactions. Tetrahedron: Asymmetry. 2001, 12 (4), 669-675.es_CO
dc.relation.references74. Ahmadi, A.; Naderi, N.; Daniali, M.; Kazemi, S.; Aazami, S.; Alizadeh, N.; Nahri-Niknafs, B., Synthesis and Pharmacological Evaluation of New Chemical Entities from Ibuprofen as Novel Analgesic Candidates. Drug Res. (Stuttg) 2015, 65 (9), 457-62.es_CO
dc.relation.references75. Rajagopal, R.; Srinivasan, K. V., Regio-selective Mono Nitration of Phenols with Ferric Nitrate in Room Temperature Ionic Liquid. Synth. Commun. 2003, 33 (6), 961-966.es_CO
dc.relation.references76. Haghnazari, N.; Karami, C.; Ghodrati, K.; Maleki, F., Nitration of phenols with Fe(NO3)3*9H2O in the presence of Nano-SiO2 as an efficient catalyst. Int. Nano Lett. 2011, 1 (1), 30-33.es_CO
dc.relation.references77. Liu, Y.; Zu, M.; Zou, X.; Zheng, Q.; Li, Y., Coordination-mediated radical nitration of methyl salicylate by ferric nitrate. Asian J. Chem. 2014, 26 (1), 241-246.es_CO
dc.relation.references78. Chan, W. N.; Hadley, M. S.; Harling, J. D.; Herdon, H. J.; Orlek, B. S.; Riley, G. J.; Stead, R. E. A.; Stean, T. O.; Thompson, M.; Upton, N.; Ward, R. W., Evaluation of a Series of Anticonvulsant 1,2,3,4-Tetrahydroisoquinolinyl-benzamides. Bioorg. Med. Chem. 2000, 8 (8), 2085-2094.es_CO
dc.relation.references79. Duan, H.; Zheng, J.; Lai, Q.; Liu, Z.; Tian, G.; Wang, Z.; Li, J.; Shen, J., 2-Phenylquinazolin-4(3H)-one, a class of potent PDE5 inhibitors with high selectivity versus PDE6. Bioorg. Med. Chem. Lett. 2009, 19 (10), 2777-2779.es_CO
dc.relation.references80. Golliher, A. E.; Tenorio, A. J.; Dimauro, N. O.; Mairata, N. R.; Holguin, F. O.; Maio, W., Using (+)-carvone to access novel derivatives of (+)-ent-cannabidiol: The first asymmetric syntheses of (+)-ent-CBDP and (+)-ent-CBDV. Tetrahedron Lett. 2021, 67, 152891.es_CO
dc.relation.references81. Brooks, P. R.; Wirtz, M. C.; Vetelino, M. G.; Rescek, D. M.; Woodworth, G. F.; Morgan, B. P.; Coe, J. W., Boron Trichloride/Tetra-n-Butylammonium Iodide: A Mild, Selective Combination Reagent for the Cleavage of Primary Alkyl Aryl Ethers. J. Org. Chem. 1999, 64 (26), 9719-9721.es_CO
dc.relation.references82. Mondal, M.; Puranik, V. G.; Argade, N. P., A Facile Phenol-Driven Intramolecular Diastereoselective Thermal/Base-Catalyzed Dipolar [2 + 2] Annulation Reactions: An Easy Access to Complex Bioactive Natural and Unnatural Benzopyran Congeners. J. Org. Chem. 2007, 72 (6), 2068-2076.es_CO
dc.relation.references83. Koura, M.; Yamaguchi, Y.; Kurobuchi, S.; Sumida, H.; Watanabe, Y.; Enomoto, T.; Matsuda, T.; Okuda, A.; Koshizawa, T.; Matsumoto, Y.; Shibuya, K., Discovery of a 2-hydroxyacetophenone derivative as an outstanding linker to enhance potency and B-selectivity of liver X receptor agonist. Bioorg. Med. Chem. 2016, 24 (16), 3436-3446.es_CO
dc.relation.references84. Oshimoto, K.; Tsuji, H.; Kawatsura, M., Synthesis of benzoxazoles via the copper-catalyzed hydroamination of alkynones with 2-aminophenols. OBC. 2019, 17 (17), 4225-4229.es_CO
dc.relation.references85. Popat, V. R.; Padhiyar, N., Kinetic Study of Bechamp Process for p-Nitrotoluene Reduction to p-Toluidine. Int. J. Chem. Eng. 2013, 4, 401-405.es_CO
dc.relation.references86. Fushimi, N.; Fujikura, H.; Shiohara, H.; Teranishi, H.; Shimizu, K.; Yonekubo, S.; Ohno, K.; Miyagi, T.; Itoh, F.; Shibazaki, T.; Tomae, M.; Ishikawa-Takemura, Y.; Nakabayashi, T.; Kamada, N.; Ozawa, T.; Kobayashi, S.; Isaji, M., Structure-activity relationship studies of 4-benzyl-1H-pyrazol-3-yl B-d-glucopyranoside derivatives as potent and selective sodium glucose co-transporter 1 (SGLT1) inhibitors with therapeutic activity on postprandial hyperglycemia. Bioorg. Med. Chem. 2012, 20 (22), 6598-6612.es_CO
dc.relation.references87. Kim, A. N.; Stoltz, B. M., Recent Advances in Homogeneous Catalysts for the Asymmetric Hydrogenation of Heteroarenes. ACS Catalysis. 2020, 10 (23), 13834-13851.es_CO
dc.relation.references88. Karakhanov, É. A.; Viktorova, E. A., Hydrogenation and dehydrogenation reactions of benzofuran and its derivatives (review). Chem. Heterocycl. Compd. 1976, 12 (4), 367-375.es_CO
dc.relation.references89. Karakhanov, É. A.; Dedov, A. G.; Loktev, A. S., Hydrogenation of oxygen-containing heterocyclic compounds on group VIII metals. Chem. Heterocycl. Compd. 1981, 17 (10), 993-995.es_CO
dc.relation.references90. Grayson, D. H.; McCarthy, Ú.; Roycroft, E. D., Intramolecular acylative ring-switching reactions of 3-(tetrahydro-2-furyl)propanoic acid derivatives to give butanolides: mechanism and scope. OBC. 2003,1 (11), 1930-1937.es_CO
dc.relation.references91. Hodgson, H. H., The iodination of o-nitrophenol. J. Chem. Soc. 1927, 1141-1144.es_CO
dc.relation.references92. Darabi, H. R.; Aghapoor, K.; Tabar-Heidar, K., A Fast and Solvent-Free Conversion of Thioamides into Thioesters. Monatsh. für Chem / Monatsh. Chem. 2004, 135 (1), 79-81.es_CO
dc.relation.references93. Willgerodt, C., Ueber die Einwirkung von gelbem Schwefelammonium auf Ketone und Chinone. Ber. Dtsch. Chem. Ges. 1887, 20 (2), 2467-2470.es_CO
dc.relation.references94. Kindler, K., Studien über den Mechanismus chemischer Reaktionen. Erste Abhandlung. Reduktion von Amiden und Oxydation von Aminen. Liebigs Ann. 1923, 431 (1), 187-230.es_CO
dc.relation.references95. Dauben, W. G.; Ciula, R. P.; Rogan, J. B., Mechanism of the Willgerodt Reaction. Studies with 1-Tetralones1. J. Org. Chem. 1957, 22 (4), 362-365.es_CO
dc.relation.references96. Asinger, F.; Schäfer, W.; Halcour, K.; Saus, A.; Triem, H., Zum Verlauf der Willgerodt-Kindler-Reaktion bei Aryl-alkylketonen. Angew. Chem. Int. Ed. 1963, 75 (22), 1050-1059.es_CO
dc.relation.references97. Wagner, E.; Wittmann, H.-J.; Elz, S.; Strasser, A., Mepyramine-JNJ7777120-hybrid compounds show high affinity to hH1R, but low affinity to hH4R. Bioorg. Med. Chem. Lett. 2011, 21 (21), 6274-6280.es_CO
dc.relation.references98. Xuan, Q.; Kong, W.; Song, Q., Copper(I)-Catalyzed Chemoselective Reduction of Benzofuran-2-yl Ketones to Alcohols with B2pin2 via a Domino-Borylation-Protodeboronation Strategy. J. Org. Chem. 2017, 82 (14), 7602-7607.es_CO
dc.relation.references99. Hirose, N.; Kuriyama, S.; Kato, Y.; Toyoshima, S., Antiinflammatory activity of some 2,3-dihydrobenzofuran-5-acetic acids and related compounds. J. Med. Chem. 1976, 19 (2), 303-308.es_CO
dc.relation.references100. Reichardt, C.; Che, D.; Heckenkemper, G.; Schäfer, G., Syntheses and UV/Vis-Spectroscopic Properties of Hydrophilic 2-, 3-, and 4-Pyridyl-Substituted Solvatochromic and Halochromic Pyridinium N-Phenolate Betaine Dyes as New Empirical Solvent Polarity Indicators. Eur. JOC. 2001, 2001 (12), 2343-2361.es_CO
dc.relation.references101. Pokhodylo, N. T.; Savka, R. D.; Matiichuk, V. S.; Obushak, N. D., Synthesis and selected transformations of 1-(5-methyl-1-aryl-1H-1,2,3-triazol-4-yl)ethanones and 1-[4-(4-R-5-methyl-1H-1,2,3-triazol-1-yl)phenyl]ethanones. Russ. J. Gen. Chem. 2009, 79 (2), 309.es_CO
dc.relation.references102. Press, J. B.; McNally, J. J., Thiophene systems. 10. The synthesis and chemistry of some thienopyridinols. J. Heterocycl. Chem. 1988, 25 (5), 1571-1581.es_CO
dc.relation.references103. Hall, A.; Billinton, A.; Brown, S. H.; Chowdhury, A.; Giblin, G. M. P.; Goldsmith, P.; Hurst, D. N.; Naylor, A.; Patel, S.; Scoccitti, T.; Theobald, P. J., Discovery of a novel indole series of EP1 receptor antagonists by scaffold hopping. Bioorg. Med. Chem. Lett. 2008, 18 (8), 2684-2690.es_CO
dc.relation.references104. Mollin, J.; Labodová, A., On mechanism of base-catalysed hydrolysis of thioamides. Collection of Czechoslovak ChemComm. 1977, 42 (2), 517-523.es_CO
dc.relation.references105. Bedoya, M.; Rinné, S.; Kiper, A. K.; Decher, N.; González, W.; Ramírez, D., TASK Channels Pharmacology: New Challenges in Drug Design. J. Med. Chem. 2019, 62 (22), 10044-10058.es_CO
dc.relation.references106. Latli, B.; Stiasni, M.; Hrapchak, M.; Li, Z.; Grinberg, N.; Lee, H.; Busacca, C. A.; Senanayake, C. H., Buscopan labeled with carbon-14 and deuterium. J. Label. Compd. Radiopharm. 2016, 59 (13), 557-564.es_CO
dc.relation.references107. Firouzabadi, H.; Iranpoor, N.; Hazarkhani, H., Iodine Catalyzes Efficient and Chemoselective Thioacetalization of Carbonyl Functions, Transthioacetalization of O,O- and S,O-Acetals and Acylals. J. Org. Chem. 2001, 66 (22), 7527-7529.es_CO
dc.relation.references108. Yadav, J. S.; Reddy, B. V. S.; Sreelakshmi, C.; Narayana Kumar, G. G. K. S.; Rao, A. B., Enantioselective reduction of 2-substituted tetrahydropyran-4-ones using Daucus carota plant cells. Tetrahedron Lett. 2008, 49 (17), 2768-2771.es_CO
dc.relation.references109. Neises, B.; Steglich, W., Simple Method for the Esterification of Carboxylic Acids. Angew. Chem. Int. Ed. 1978, 17 (7), 522-524.es_CO
dc.relation.references110. Myers, A. G.; Yang, B. H.; Chen, H.; Gleason, J. L., Use of Pseudoephedrine as a Practical Chiral Auxiliary for Asymmetric Synthesis. J. Am. Chem. Soc. 1994, 116 (20), 9361-9362.es_CO
dc.relation.references111. Pearson, R. G., Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85 (22), 3533-3539.es_CO
dc.relation.references112. Pearson, R. G., Hard and soft acids and bases, HSAB, part 1: ACS. 1968, 45 (9), 581.es_CO
dc.relation.references113. Pearson, R. G., Hard and soft acids and bases, HSAB, part II: Underlying theories. J. Chem. Educ. 1968, 45 (10), 643.es_CO
dc.relation.references114. Pummerer, R., Über Phenyl-sulfoxyessigsäure. Ber. Dtsch. Chem. Ges. 1909, 42 (2), 2282-2291.es_CO
dc.relation.references115. Kaiser, D.; Klose, I.; Oost, R.; Neuhaus, J.; Maulide, N., Bond-Forming and -Breaking Reactions at Sulfur(IV): Sulfoxides, Sulfonium Salts, Sulfur Ylides, and Sulfinate Salts. Chem Rev. 2019, 119 (14), 8701-8780.es_CO
dc.relation.references116. Gamba-Sánchez, D.; Garzón-Posse, F., Pummerer-Type Reactions as Powerful Tools in Organic Synthesis. Curr. Org. Synth. 2015, pp 661-702.es_CO
dc.relation.references117. Acosta-Guzmán, P.; Rodríguez-López, A.; Gamba-Sánchez, D., Pummerer Synthesis of Chromanes Reveals a Competition between Cyclization and Reductive Chlorination. Org. Lett. 2019, 21 (17), 6903-6908.es_CO
dc.relation.references118. Cao, Y.-J.; Lai, Y.-Y.; Cao, H.; Xing, X.-N.; Wang, X.; Xiao, W.-J., A highly efficient carbon sulfur bond formation reaction via microwave-assisted nucleophilic substitution of thiols to polychloroalkanes without a transition-metal catalyst. Can. J. Chem. 2006, 84 (11), 1529-1533.es_CO
dc.relation.references119. Xie, H.-Q.; Truong, N.; Buncel, E.; Purdon, J. G., Basicity, nucleophilicity, and nucleofugality in the elimination substitution reactions of -phenylmercaptoethyl phenolates in DMSO-ethanol media. Can. J. Chem. 1994, 72 (2), 448-453.es_CO
dc.relation.references120. Dey, D.; Pathak, T., Enantiopure Trisubstituted Tetrahydrofurans with Appendage Diversity: Vinyl Sulfone- and Vinyl Sulfoxide-Modified Furans Derived from Carbohydrates as Synthons for Diversity Oriented Synthesis. Molecules. 2016, 21 (6), 690.es_CO
dc.relation.references121. Baldwin, J. E.; Lusch, M. J., Rules for ring closure: application to intramolecular aldol condensations in polyketonic substrates. Tetrahedron Lett. 1982, 38 (19), 2939-2947.es_CO
dc.relation.references122. Baldwin, J. E.; Kruse, L. I., Rules for ring closure. Stereoelectronic control in the endocyclic alkylation of ketone enolates. J. Chem. Soc, ChemComm. 1977, (7), 233-235.es_CO
dc.relation.references123. Henner, P.; Schiavon, M.; Morel, J.-L.; Lichtfouse, E., Polycyclic Aromatic Hydrocarbons (PAHs) Occurrence and Remediation Methods. Analysis. 1997, 25.es_CO
dc.relation.references124. Harvey, R. G., Bridged polycyclic aromatic hydrocarbons. A review. Org. Prep. Proced. Int. 1997, 29 (3), 243-283.es_CO
dc.relation.references125. Honda, M.; Suzuki, N., Toxicities of Polycyclic Aromatic Hydrocarbons for Aquatic Animals. Int. J. Environ. Res. 2020, 17 (4), 1363.es_CO
dc.relation.references126. Patel, A. B.; Shaikh, S.; Jain, K. R.; Desai, C.; Madamwar, D., Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front. Microbiol. 2020, 11.es_CO
dc.relation.references127. Makar, S.; Saha, T.; Singh, S. K., Naphthalene, a versatile platform in medicinal chemistry: Sky-high perspective. Eur. J. Med. Chem. 2019, 161, 252-276.es_CO
dc.relation.references128. Mallory, F. B.; Butler, K. E.; Evans, A. C.; Brondyke, E. J.; Mallory, C. W.; Yang, C.; Ellenstein, A., Phenacenes: A Family of Graphite Ribbons. 2. Syntheses of Some [7]Phenacenes and an [11]Phenacene by Stilbene-like Photocyclizations. J. Am. Chem. Soc. 1997, 119 (9), 2119-2124.es_CO
dc.relation.references129. Ma, E.; Jeong, S.-J.; Choi, J.-S.; Nguyen, T. H.; Jeong, C.-H.; Joo, S. H., MS-5, a Naphthalene Derivative, Induces the Apoptosis of an Ovarian Cancer Cell CAOV-3 by Interfering with the Reactive Oxygen Species Generation. Biomol Ther. 2019, 27 (1), 48-53.es_CO
dc.relation.references130. Gurung, S. K.; Dana, S.; Mandal, K.; Mukhopadhyay, P.; Mondal, N., Downregulation of c-Myc and p21 expression and induction of S phase arrest by naphthalene diimide derivative in gastric adenocarcinoma cells. Chem.-Biol. Interact. 2019, 304, 106-123.es_CO
dc.relation.references131. Wang, Y.; Zhang, X.; Zhao, J.; Xie, S.; Wang, C., Nonhematotoxic Naphthalene Diimide Modified by Polyamine: Synthesis and Biological Evaluation. J. Med. Chem. 2012, 55 (7), 3502-3512.es_CO
dc.relation.references132. Lee, M. H.; Lapidus, R. G.; Ferraris, D.; Emadi, A., Analysis of the Mechanisms of Action of Naphthoquinone-Based Anti-Acute Myeloid Leukemia Chemotherapeutics. Molecules. 2019, 24 (17), 3121.es_CO
dc.relation.references133. Xu, W.-T.; Shen, G.-N.; Luo, Y.-H.; Piao, X.-J.; Wang, J.-R.; Wang, H.; Zhang, Y.; Li, J.-Q.; Feng, Y.-C.; Zhang, Y.; Zhang, T.; Wang, S.-N.; Wang, C.-Y.; Jin, C.-H., New naphthalene derivatives induce human lung cancer A549cell apoptosis via ROS-mediated MAPKs, Akt, and STAT3 signaling pathways. Chem.-Biol. Interact. 2019, 304, 148-157.es_CO
dc.relation.references134. Arshad, A.; Arshad, I.; Humayun, M.; Malik, A., Modulation of Oxidative Status under Naphthalene Induced Nephrotoxicity in Mice. Pakistan J. Med. Sci. 2020, 14 (1), 20-25.es_CO
dc.relation.references135. Zhang, Y.; Zhang, Q.; Xin, W.; Liu, N.; Zhang, H., Nudol, a phenanthrene derivative from Dendrobium nobile, induces cell cycle arrest and apoptosis and inhibits migration in osteosarcoma cells. Drug Des. Dev. 2019, 13, 2591-2601.es_CO
dc.relation.references136. Hou, J.-w.; Fei, Y.-d.; Li, W.; Chen, Y.-h.; Wang, Q.; Xiao, Y.; Wang, Y.-p.; Li, Y.-g., The transient receptor potential melastatin 4 channel inhibitor 9-phenanthrol modulates cardiac sodium channel. Br. J. Pharmacol. 2018, 175 (23), 4325-4337.es_CO
dc.relation.references137. Some, S.; Dutta, B.; Ray, J. K., Synthesis of substituted benzene derivatives by homo- and hetero-coupling of 2-bromobenzaldehyde and bromovinylaldehydes followed by McMurry coupling. Tetrahedron Lett. 2006, 47 (7), 1221-1224.es_CO
dc.relation.references138. Dudnik, A. S.; Schwier, T.; Gevorgyan, V., Gold(I)-catalyzed double migration cascades toward (1E,3E)-dienes and naphthalenes. Tetrahedron Lett. 2009, 65 (9), 1859-1870.es_CO
dc.relation.references139. Dudnik, A. S.; Schwier, T.; Gevorgyan, V., Gold-Catalyzed Double Migration-Benzannulation Cascade toward Naphthalenes. Org. Lett. 2008, 10 (7), 1465-1468.es_CO
dc.relation.references140. Xia, Y.; Liu, Z.; Xiao, Q.; Qu, P.; Ge, R.; Zhang, Y.; Wang, J., Rhodium(II)-Catalyzed Cyclization of Bis(N-tosylhydrazone)s: An Efficient Approach towards Polycyclic Aromatic Compounds. Angew. Chem. Int. Ed. 2012, 51 (23), 5714-5717.es_CO
dc.relation.references141. Zhu, C.; Qiu, L.; Xu, G.; Li, J.; Sun, J., Base-Promoted/Gold-Catalyzed Intramolecular Highly Selective and Controllable Detosylative Cyclization. Chemistry - Chem. Eur. J. 2015, 21 (37), 12871-12875.es_CO
dc.relation.references142. Nonoyama, Y.; Yaguchi, K.; Kinoshita, H.; Miura, K., Cyclization of 1-ethynyl-2-alkenylbenzenes to naphthalenes using Et2AlCl and DIBAL-H. Tetrahedron Lett. 2021, 62, 152682.es_CO
dc.relation.references143. Kurteva, V. B.; Santos, A. G.; Afonso, C. A. M., Microwave accelerated facile synthesis of fused polynuclear hydrocarbons in dry media by intramolecular Friedel-Crafts alkylation. OBC. 2004, 2 (4), 514-523.es_CO
dc.relation.references144. Hong, D. J.; Kim, D. W.; Chi, D. Y., Facile ring-closure cyclization of arenes by nucleophilic C-alkylation reaction in ionic liquid. Tetrahedron Lett. 2010, 51 (1), 54-56.es_CO
dc.relation.references145. Sakai, N.; Kobayashi, T.; Ogiwara, Y., One-pot Synthesis of Tetralin Derivatives from 3-Benzoylpropionic Acids: Indium-catalyzed Hydrosilylation of Ketones and Carboxylic Acids and Intramolecular Cyclization. Chem Lett. 2015, 44 (11), 1503-1505.es_CO
dc.relation.references146. Wünsch, B., Eine neue Methode zur Darstellung von 3-Alkoxy- und 3-Hydroxy-3,4-dihydro-1H-2-benzopyranen. Arch. Pharm. 1990, 323 (8), 493-499.es_CO
dc.relation.references147. Maryanoff, B. E.; Reitz, A. B., The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects. Chem. Rev. 1989, 89 (4), 863-927.es_CO
dc.relation.references148. Takahashi, I.; Hayashi, M.; Fujita, T.; Ichikawa, J., Brønsted Acid-catalyzed Tandem Cycloaromatization of Naphthalene-based Bisacetals: Selective Synthesis of ortho-Fused Six-hexagon Benzenoids. Chem. Lett. 2017, 46 (3), 392-394.es_CO
dc.relation.references149. Banerjee, A.; Maji, M. S., A Brønsted Acid Catalyzed Cascade Reaction for the Conversion of Indoles to a-(3-Indolyl) Ketones by Using 2-Benzyloxy Aldehydes. Chemistry - Chem. Eur. J. 2019, 25 (49), 11521-11527.es_CO
dc.relation.references150. Miyaura, N.; Suzuki, A., Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. Journal of the Chemical Society, ChemComm. 1979, (19), 866-867.es_CO
dc.relation.references151. Beletskaya, I. P.; Alonso, F.; Tyurin, V., The Suzuki-Miyaura reaction after the Nobel prize. Coordination Chem. Rev. 2019, 385, 137-173.es_CO
dc.relation.references152. Hooshmand, S. E.; Heidari, B.; Sedghi, R.; Varma, R. S., Recent advances in the Suzuki Miyaura cross-coupling reaction using efficient catalysts in eco-friendly media. Curr. 2019, 21 (3), 381-405.es_CO
dc.relation.references153. Cousaert, N.; Toto, P.; Willand, N.; Deprez, B., Efficient, protection-free Suzuki Miyaura synthesis of ortho-biphenyltetrazoles. Tetrahedron Lett. 2005, 46 (38), 6529-6532.es_CO
dc.relation.references154. Molina de la Torre, J. A.; Espinet, P.; Albéniz, A. C., Solvent-Induced Reduction of Palladium-Aryls, a Potential Interference in Pd Catalysis. Organometallics. 2013, 32 (19), 5428-5434.es_CO
dc.relation.references155. Sherwood, J.; Clark, J. H.; Fairlamb, I. J. S.; Slattery, J. M., Solvent effects in palladium catalysed cross-coupling reactions. Curr. 2019, 21 (9), 2164-2213.es_CO
dc.relation.references156. Casares, J. A.; Espinet, P.; Salas, G., 14-Electron T-Shaped [PdRXL] Complexes: Evidence or Illusion? Mechanistic Consequences for the Stille Reaction and Related Processes. Chemistry Chem. Eur. J. 2002, 8 (21), 4843-4853.es_CO
dc.relation.references157. Zhang, D.; Yang, D.; Wang, S.; Zeng, L.; Xin, J.; Zhang, H.; Lei, A., The Real Structure of Pd(OAc)2 in Various Solvents. Chin. J. Chem. 2021, 39 (2), 307-311.es_CO
dc.relation.references158. Hashemi Fath, R.; Hoseini, S. J., Covalently cyclopalladium(II) complex/reduced-graphene oxide as the effective catalyst for the Suzuki Miyaura reaction at room temperature. J. Organomet. Chem. 2017, 828, 16-23.es_CO
dc.relation.references159. Liu, Y.; Song, R.-J.; Li, J.-H., Palladium-catalyzed dearomatizative [2 + 2 + 1] carboannulation of 1,7-enynes with aryl diazonium salts and H2O: facile synthesis of spirocyclohexadienone-fused cyclopenta[c]quinolin-4(5H)-ones. ChemComm. 2017, 53 (61), 8600-8603.es_CO
dc.relation.references160. Lima, C. F. R. A. C.; Rodrigues, A. S. M. C.; Silva, V. L. M.; Silva, A. M. S.; Santos, L. M. N. B. F., Role of the Base and Control of Selectivity in the Suzuki Miyaura Cross-Coupling Reaction. ChemCatChem. 2014, 6 (5), 1291-1302.es_CO
dc.relation.references161. Ishiyama, T.; Ishida, K.; Miyaura, N., Synthesis of pinacol arylboronates via cross-coupling reaction of bis(pinacolato)diboron with chloroarenes catalyzed by palladium(0) tricyclohexylphosphine complexes. Tetrahedron Lett.2001, 57 (49), 9813-9816.es_CO
dc.relation.references162. Ishiyama, T.; Murata, M.; Miyaura, N., Palladium(0)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes: A Direct Procedure for Arylboronic Esters. The J. Org. Chem. 1995, 60 (23), 7508-7510.es_CO
dc.relation.references163. Martínez, A. G.; Herrera, A.; Martínez, R.; Teso, E.; García, A.; Osío, J.; Pargada, L.; Unanue, R.; Subramanian, L. R.; Hanack, M., A new and convenient synthesis of alkyl and aryl pyrimidines. J. Heterocycl. Chem. 1988, 25 (4), 1237-1241.es_CO
dc.relation.references164. Watanabe, T.; Miyaura, N.; Suzuki, A., Synthesis of Sterically Hindered Biaryls via the Palladium-Catalyzed Cross-Coupling Reaction of Arylboronic Acids or their Esters with Haloarenes. Synlett 1992, 1992, 207-210.es_CO
dc.relation.references165. Amatore, C.; Jutand, A.; Le Duc, G., Kinetic Data for the Transmetalation/Reductive Elimination in Palladium-Catalyzed Suzuki Miyaura Reactions: Unexpected Triple Role of Hydroxide Ions Used as Base. Chemistry Chem. Eur. J. 2011, 17 (8), 2492-2503.es_CO
dc.relation.references166. Xia, J.; Fu, Y.; He, G.; Sun, X.; Wang, X., Core-shell-like Ni-Pd nanoparticles supported on carbon black as a magnetically separable catalyst for green Suzuki-Miyaura coupling reactions. Appl. Catal. B 2017, 200, 39-46.es_CO
dc.relation.references167. Deng, J. Z.; Paone, D. V.; Ginnetti, A. T.; Kurihara, H.; Dreher, S. D.; Weissman, S. A.; Stauffer, S. R.; Burgey, C. S., Copper-Facilitated Suzuki Reactions: Application to 2-Heterocyclic Boronates. Org. Lett. 2009, 11 (2), 345-347.es_CO
dc.relation.references168. Snyder, S. A.; Brucks, A. P.; Treitler, D. S.; Moga, I., Concise Synthetic Approaches for the Laurencia Family: Formal Total Syntheses of (±)-Laurefucin and (±)-E- and (±)-Z-Pinnatifidenyne. J. Am. Chem. Soc. 2012, 134 (42), 17714-17721.es_CO
dc.relation.references169. Chang, C.; Chu, K. C.; Yue, S., Anhydrous Deprotection of Dimethyl Acetals with Acetyl Chloride/ZnCl2. Synth. Commun. 1992, 22 (8), 1217-1220.es_CO
dc.relation.references170. Foote, K. M.; Hayes, C. J.; John, M. P.; Pattenden, G., Synthetic studies towards the phomactins. Concise syntheses of the tricyclic furanochroman and the oxygenated bicyclo[9.3.1]pentadecane ring systems in phomactin A. OBC. 2003, 1 (22), 3917-3948.es_CO
dc.relation.references171. Ballini, R.; Petrini, M., Facile and Inexpensive Synthesis of 4-Oxoalkanoic Acids from Primary Nitroalkanes and Acrolein. Synthesis. 1986, 1986, 1024-1026.es_CO
dc.relation.references172. Xu, Y.-z.; Yakushijin, K.; Horne, D. A., Synthesis of C11N5 Marine Sponge Alkaloids: (±)-Hymenin, Stevensine, Hymenialdisine, and Debromohymenialdisine. J. Org. Chem. 1997, 62 (3), 456-464.es_CO
dc.relation.references173. Barrios Sosa, A. C.; Yakushijin, K.; Horne, D. A., Controlling cyclizations of 2-pyrrolecarboxamidoacetals. Facile solvation of B-amido aldehydes and revised structure of synthetic homolongamide. Tetrahedron Lett. 2000, 41 (22), 4295-4299.es_CO
dc.relation.references174. Goldring, W. P. D.; Paden, W. T., A ring-closing metathesis approach to the bicyclo[4.3.1]decane core of caryolanes. Tetrahedron Lett. 2011, 52 (8), 859-862.es_CO
dc.relation.references175. Sen, S. E.; Roach, S. L.; Boggs, J. K.; Ewing, G. J.; Magrath, J., Ferric Chloride Hexahydrate: A Mild Hydrolytic Agent for the Deprotection of Acetals. J. Org. Chem. 1997, 62 (19), 6684-6686.es_CO
dc.relation.references176. Kocienski, P. J.; Street, S. D. A.; Yeates, C.; Campbell, S. F., A directed aldol approach to (+)-milbemycin B3. J. Chem. Soc. Perkin Trans. 1 1987, 2171-2181.es_CO
dc.relation.references177. Ma, R.; Liu, A.-H.; Huang, C.-B.; Li, X.-D.; He, L.-N., Reduction of sulfoxides and pyridine-N-oxides over iron powder with water as hydrogen source promoted by carbon dioxide. Curr. 2013, 15 (5), 1274-1279.es_CO
dc.relation.references178. Porwal, D.; Oestreich, M., B(C6F5)3-Catalyzed Reduction of Sulfoxides and Sulfones to Sulfides with Hydrosilanes. Synthesis 2017, 49 (20), 4698-4702.es_CO
dc.relation.references179. Enthaler, S., A straightforward zinc-catalysed reduction of sulfoxides to sulfides. Catal. Sci. Technol. 2011, 1 (1), 104-110.es_CO
dc.relation.references180. Bahrami, K.; Khodaei, M. M.; Karimi, A., Mild and Efficient Deoxygenation of Sulfoxides to Sulfides with Triflic Anhydride/Potassium Iodide Reagent System. Synthesis. 2008, 2008 (16), 2543-2546.es_CO
dc.relation.references181. Abbasi, M.; Mohammadizadeh, M. R.; Moradi, Z., Efficient reduction of sulfoxides with NaHSO3 catalyzed by I2. Tetrahedron Lett. 2015, 56 (47), 6610-6613.es_CO
dc.relation.references182. Bhatia, G. S.; Graczyk, P. P., A mild protocol for the deoxygenation of a-hydrogen-containing sulfoxides to the corresponding sulfides. Tetrahedron Lett. 2004, 45 (27), 5193-5195.es_CO
dc.relation.references183. Jang, Y.; Kim, K. T.; Jeon, H. B., Deoxygenation of Sulfoxides to Sulfides with Thionyl Chloride and Triphenylphosphine: Competition with the Pummerer Reaction. J. Org. Chem. 2013, 78 (12), 6328-6331.es_CO
dc.relation.references184. Zhao, X.; Zheng, X.; Yang, B.; Sheng, J.; Lu, K., Deoxygenation of sulphoxides to sulphides with trichlorophosphane. OBC.2018, 16 (7), 1200-1204.es_CO
dc.relation.references185. Nicolaou, K. C.; Koumbis, A. E.; Snyder, S. A.; Simonsen, K. B., Novel Reactions Initiated by Titanocene Methylidenes: Deoxygenation of Sulfoxides, N-Oxides, and Selenoxides. Angew. Chem. Int. Ed. 2000, 39 (14), 2529-2533.es_CO
dc.relation.references186. Mitsudome, T.; Takahashi, Y.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K., Hydrogenation of Sulfoxides to Sulfides under Mild Conditions Using Ruthenium Nanoparticle Catalysts. Angew. Chem. Int. Ed. 2014, 53 (32), 8348-8351.es_CO
dc.relation.references187. Fu, Z.; Li, Z.; Song, Y.; Yang, R.; Liu, Y.; Cai, H., Decarboxylative Halogenation and Cyanation of Electron-Deficient Aryl Carboxylic Acids via Cu Mediator as Well as Electron-Rich Ones through Pd Catalyst under Aerobic Conditions. J. Org. Chem. 2016, 81 (7), 2794-2803.es_CO
dc.relation.references188. Song, S.; Sun, X.; Li, X.; Yuan, Y.; Jiao, N., Efficient and Practical Oxidative Bromination and Iodination of Arenes and Heteroarenes with DMSO and Hydrogen Halide: A Mild Protocol for Late-Stage Functionalization. Org. Lett. 2015, 17 (12), 2886-2889.es_CO
dc.relation.references189. Singh, J.; Yadav, D.; Singh, J. D., En Route Activity of Hydration Water Allied with Uranyl (UO22+) Salts Amid Complexation Reactions with an Organothio-Based (O, N, S) Donor Base. Inorg 2019, 58 (8), 4972-4978.es_CO
dc.relation.references190. Miki, K.; Kohki, I.; Rumi, K.; Hideki, K., Stereoselective Syntheses of (E) a-,B-Didehydroamino Acid and Peptide Containing Its Residue Utilizing Oxazolidinone Derivative. Bull. Chem. Soc. Jpn. 2009, 82 (3), 364-380.es_CO
dc.relation.references191. Ezawa, T.; Jung, S.; Kawashima, Y.; Noguchi, T.; Imai, N., Ecological Base-Conditioned Preparation of Dipeptides Using Unprotected a-Amino Acids Containing Hydrophilic Side Chains. Bull. Chem. Soc. Jpn. 2017, 90 (6), 689-696.es_CO
dc.relation.references192. Serpier, F.; Brayer, J.-L.; Folléas, B.; Darses, S., Access to Polyfunctionalized Chiral Piperidines through Enantioselective Addition Carbocyclization Cascade Reaction Catalyzed by a Rhodium(I) Diene Complex. Org. Lett. 2015, 17 (21), 5496-5499.es_CO
dc.relation.references193. Becerra-Figueroa, L.; Ojeda-Porras, A.; Gamba-Sánchez, D., Transamidation of Carboxamides Catalyzed by Fe(III) and Water. J. Org. Chem. 2014, 79 (10), 4544-4552.es_CO
dc.relation.references194. Wang, B.; Liu, Y.; Lin, C.; Xu, Y.; Liu, Z.; Zhang, Y., Synthesis of Sulfur-Bridged Polycycles via Pd-Catalyzed Dehydrogenative Cyclization. Org. Lett. 2014, 16 (17), 4574-4577.es_CO
dc.relation.references195. Schevenels, F. T.; Shen, M.; Snyder, S. A., Alkyldisulfanium Salts: Isolable, Electrophilic Sulfur Reagents Competent for Polyene Cyclizations. Org. Lett. 2017, 19 (1), 2-5.es_CO
dc.relation.references196. Yang, T.; Liu, Q.; Cheng, Y.; Cai, W.; Ma, Y.; Yang, L.; Wu, Q.; Orband-Miller, L. A.; Zhou, L.; Xiang, Z.; Huxdorf, M.; Zhang, W.; Zhang, J.; Xiang, J.-N.; Leung, S.; Qiu, Y.; Zhong, Z.; Elliott, J. D.; Lin, X.; Wang, Y., Discovery of Tertiary Amine and Indole Derivatives as Potent RORt Inverse Agonists. ACS Med. Chem. Lett. 2014, 5 (1), 65-68.es_CO
dc.relation.references197. Abe, H.; Fujii, H.; Masunari, C.; Itani, J.; Kashino, S.; Shibaike, K.; Harayama, T., Construction of 1,3-Oxathiane Ring through Pummerer Reaction of gamma, delta-Unsaturated Sulfinyl Compounds. Chem. Pharm. Bull. 1997, 45 (5), 778-785.es_CO
dc.relation.references198. Hiessböck, R.; Kratzel, M., Synthesis of [1,4]dioxino[2,3-c]quinolines and [1,4]dioxepino-[2,3-c]quinolines and their 1-sulfur analogues. J. Heterocycl. Chem. 1999, 36 (5), 1295-1300.es_CO
dc.relation.references199. Barry, C. N.; Baumrucker, S. J.; Andrews, R. C.; Evans, S. A., Cyclodehydration and selective chlorination of trans-2-hydroxycyclohexyl 2-hydroxyethyl sulfide with triphenylphosphine and tetrachloromethane. J. Org. Chem. 1982, 47 (20), 3980-3983.es_CO
dc.relation.references200. Konstantinova, T. V.; Dyubankova, N. N.; Klykov, V. N.; Maslov, M. A.; Serebrennikova, G. A., The Synthesis of Cationic Glycerolipid Acetals Containing Aliphatic and Heterocyclic Bases. Russ. J. Bioorganic Chem. 2002, 28 (2), 158-161.es_CO
dc.relation.references201. Xu, H.; Lv, M.; Tian, X., A Review on Hemisynthesis, Biosynthesis, Biological Activities, Mode of Action, and Structure-Activity Relationship of Podophyllotoxins: 2003- 2007. Curr. Med. Chem. 2009, 16 (3), 327-349.es_CO
dc.relation.references202. Mooradian, A. D.; Morley, J. E.; Korenman, S. G., Biological Actions of Androgens. Endocr. Rev. 1987, 8 (1), 1-28.es_CO
dc.relation.references203. Fels, E., Treatment of Breast Cancer with Testosterone Propionate. J. Clin. Endocrinol. Metab. 1944, 4 (3), 121-125.es_CO
dc.relation.references204. Katsiki, N.; Tsioufis, K.; Ural, D.; Volpe, M., Fifteen years of LIFE (Losartan Intervention for Endpoint Reduction in Hypertension) Lessons learned for losartan: An old dog playing good tricks. J. Clin. Hypertens. 2018, 20 (8), 1153-1159.es_CO
dc.relation.references205. Esu, E.; Effa, E. E.; Opie, O. N.; Uwaoma, A.; Meremikwu, M. M., Artemether intramuscular injection for severe malaria in children. CDSR. 2013, (8).es_CO
dc.relation.references206. Skrzypek, R.; Callaghan, R., The "pushmi-pullyu" of resistance to chloroquine in malaria. Essays Biochem. 2017, 61 (1), 167-175.es_CO
dc.relation.references207. Cheng, E., Proton pump inhibitors for eosinophilic oesophagitis. Curr. Opin. Gastroenterol. 2013, 29 (4), 416-420.es_CO
dc.relation.references208. Movahedi, F.; Li, L.; Gu, W.; Xu, Z. P., Nanoformulations of albendazole as effective anticancer and antiparasite agents. Nanomed. J. 2017, 12 (20), 2555-2574.es_CO
dc.relation.references209. Cannizzaro, S., Ueber den der Benzoësäure entsprechenden Alkohol. Justus Liebigs Ann. Chem. 1853, 88 (1), 129-130.es_CO
dc.relation.references210. Strässler, C.; Linden, A.; Heimgartner, H., Novel Heterospirocyclic 3-Amino-2H-azirines as Synthons for Heterocyclic a-Amino Acids. Helv. Chim. Acta 1997, 80 (5), 1528-1554.es_CO
dc.relation.references211. Lowe, R. F.; Nelson, J.; Dang, T. N.; Crowe, P. D.; Pahuja, A.; McCarthy, J. R.; Grigoriadis, D. E.; Conlon, P.; Saunders, J.; ChenChen; Szabo, T.; Chen, T. K.; Bozigian, H., Rational Design, Synthesis, and Structure-Activity Relationships of Aryltriazoles as Novel Corticotropin-Releasing Factor-1 Receptor Antagonists. J. Med. Chem. 2005, 48 (5), 1540-1549.es_CO
dc.relation.references212. Müller, P.; Chappellet, S., Asymmetric 1,3-Dipolar Cycloadditions of 2-Diazocyclohexane-1,3-diones and Alkyl Diazopyruvates. Helv. Chim. Acta. 2005, 88 (5), 1010-1021.es_CO
dc.relation.references213. Ramkumar, N.; Nagarajan, R., Total Synthesis of Calothrixin A and B via C-H Activation. J. Org. Chem. 2013, 78 (6), 2802-2807.es_CO
dc.relation.references214. Becerra-Cely, L.; Rueda-Espinosa, J.; Ojeda-Porras, A.; Gamba-Sánchez, D., Insights into the Pummerer synthesis of oxazolines. OBC. 2016, 14 (36), 8474-8485.es_CO
dc.relation.references215. Gardner, J. N.; Kaiser, S.; Krubiner, A.; Lucas, H., A Facile Reduction of Sulfones to Sulfides. Can. J. Chem. 1973, 51 (9), 1419-1421.es_CO
dc.relation.references216. Akgün, E.; Mahmood, K.; Mathis, C. A., Rapid reduction of sulfones to sulfides using LiAlH4 TiCl4. J. Chem. Soc., Chem. Commun. 1994, (6), 761-762.es_CO
dc.relation.references217. Wu, P.-Y.; Wu, H.-L.; Uang, B.-J., Asymmetric Synthesis of Functionalized Diarylmethanols Catalyzed by a New y-Amino Thiol. J. Org. Chem. 2006, 71 (2), 833-835.es_CO
dc.relation.references218. Voutyritsa, E.; Triandafillidi, I.; Kokotos, C. G., Green Organocatalytic Oxidation of Sulfides to Sulfoxides and Sulfones. Synthesis. 2017, 49 (04), 917-924.es_CO
dc.relation.references219. Shen, T.; Wang, T.; Qin, C.; Jiao, N., Silver-Catalyzed Nitrogenation of Alkynes: A Direct Approach to Nitriles through C-C Bond Cleavage. Angew. Chem. Int. Ed. 2013, 52 (26), 6677-6680.es_CO
dc.relation.references220. Bull, J. A.; Mousseau, J. J.; Charette, A. B., Convenient One-Pot Synthesis of (E)-B-Aryl Vinyl Halides from Benzyl Bromides and Dihalomethanes. Org. Lett. 2008, 10 (23), 5485-5488.es_CO
dc.relation.references221. Kotovshchikov, Y. N.; Latyshev, G. V.; Lukashev, N. V.; Beletskaya, I. P., An Efficient Approach to Azolyl-Substituted Steroids through Copper-Catalyzed Ullmann C-N Coupling. Eur. J. Org. Chem. 2013, 2013 (34), 7823-7832.es_CO
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentTextes_CO
dc.type.redcolhttps://purl.org/redcol/resource_type/TD
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.subject.themesQuímicaes_CO


Ficheros en el ítem

Thumbnail

Nombre: Tesis Camilo Mahecha.pdf

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem