Mostrar el registro sencillo del ítem
Evaluación del contenido de azúcares y polifenoles del extracto de Vaccinium meridionale en diferentes medios etanólicos para el estudio de su actividad antioxidante y antitumoral
dc.contributor.advisor | Jiménez Díaz, Elizabeth | |
dc.contributor.author | Monroy Bustos, Isabella | |
dc.date.accessioned | 2022-07-29T21:25:48Z | |
dc.date.available | 2022-07-29T21:25:48Z | |
dc.date.issued | 2022-07-28 | |
dc.identifier.uri | http://hdl.handle.net/1992/59387 | |
dc.description.abstract | En este trabajo se realizó el estudio de extractos etanólicos de agrás, obtenidos por extracción asistida por microondas (MAE), en tanto a su contenido de azucar, su contenido polifenólico, su actividad antioxidante y su actividad antitumoral. Para las cuantificaciones de azucares (índice de Brix) y de contenido polifenólico (Folin-Ciocalteu) se evaluaron tres proporciones de etanol en el medio de extracción: 30, 40 y 50% de etanol. Frente a esto se halló que el contenido de azúcares es mínimo en las tres proporciones, y el contenido polifenólico es máximo en el medio de 50% de etanol. De esta manera los estudios de actividad se realizaron sobre el extracto obtenido con 50% de etanol, dando como resultado actividades antioxidante (TEAC) y antitumoral (MTT) promisorias. | |
dc.format.extent | 34 páginas | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de los Andes | es_CO |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
dc.title | Evaluación del contenido de azúcares y polifenoles del extracto de Vaccinium meridionale en diferentes medios etanólicos para el estudio de su actividad antioxidante y antitumoral | |
dc.type | Trabajo de grado - Pregrado | es_CO |
dc.publisher.program | Química | es_CO |
dc.subject.keyword | Vaccinium meridionale | |
dc.subject.keyword | Compuestos polifenólicos | |
dc.subject.keyword | Actividad antioxidante | |
dc.subject.keyword | Actividad antitumoral | |
dc.publisher.faculty | Facultad de Ciencias | es_CO |
dc.publisher.department | Departamento de Química | es_CO |
dc.contributor.jury | Miscione, Gian Pietro | |
dc.contributor.jury | Zapata Rivera, Jhon Enrique | |
dc.contributor.jury | Carazzone, Chiara | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dc.description.degreename | Químico | es_CO |
dc.description.degreelevel | Pregrado | es_CO |
dc.contributor.researchgroup | Grupo de Investigación en Bioquímica Aplicada | es_CO |
dc.identifier.instname | instname:Universidad de los Andes | es_CO |
dc.identifier.reponame | reponame:Repositorio Institucional Séneca | es_CO |
dc.identifier.repourl | repourl:https://repositorio.uniandes.edu.co/ | es_CO |
dc.relation.references | Galvis Rueda, M.; Torres Torres, M. Etnobotánica y Usos de Las Plantas de La Comunidad Rural de Sogamoso, Boyacá, Colombia. Rev. Investig. Agrar. Ambient. 2017, 8 (2), 187-187-206. https://doi.org/10.22490/21456453.2045. | es_CO |
dc.relation.references | Celis, M. E. M.; Franco Tobón, Y. N.; Agudelo, C.; Arango, S. S.; Rojano, B. Andean Berry (Vaccinium Meridionale Swartz). Fruit Veg. Phytochem. Chemestry Hum. Health 2nd Ed Yahia EM Ed 2017, 869-882 | es_CO |
dc.relation.references | Garzón, G. A.; Narváez, C. E.; Riedl, K. M.; Schwartz, S. J. Chemical Composition, Anthocyanins, Non-Anthocyanin Phenolics and Antioxidant Activity of Wild Bilberry ( Vaccinium Meridionale Swartz) from Colombia. Food Chem. 2010, 122 (4), 980-980-986. https://doi.org/10.1016/j.foodchem.2010.03.017 | es_CO |
dc.relation.references | Carmona-Jiménez Y; Palma M; Guillén-Sánchez DA; García-Moreno MV. Study of the Cluster Thinning Grape as a Source of Phenolic Compounds and Evaluation of Its Antioxidant Potential. Biomolecules 2021, 11 (2). https://doi.org/10.3390/biom11020227 | es_CO |
dc.relation.references | Opris, O.; Soran, M.-L.; Lung, I.; Stegarescu, A.; Gutoiu, S.; Podea, R.; Podea, P. Optimization of Extraction Conditions of Polyphenols, Antioxidant Capacity and Sun Protection Factor from Prunus Spinosa Fruits. Application in Sunscreen Formulation. J. Iran. Chem. Soc. 2021, 1-1-12. https://doi.org/10.1007/s13738-021-02217-9 | es_CO |
dc.relation.references | Varo, M. Á.; Martín-Gómez, J.; Mérida, J.; Serratosa, M. P. Bioactive Compounds and Antioxidant Activity of Highbush Blueberry (Vaccinium Corymbosum) Grown in Southern Spain. Eur. Food Res. Technol. 2021, 247 (5), 1199-1199-1208. https://doi.org/10.1007/s00217-021-03701-5 | es_CO |
dc.relation.references | Bastías-Montes, J. M.; Vidal-San Martín, C.; Muñoz-Fariña, O.; Petzold-Maldonado, G.; Quevedo-León, R.; Wang, H.; Yi, Y.; Céspedes-Acuña, C. L. Cryoconcentration Procedure for Aqueous Extracts of Maqui Fruits Prepared by Centrifugation and Filtration from Fruits Harvested in Different Years from the Same Localities. J. Berry Res. 2019, 9 (3), 377-377-394. https://doi.org/10.3233/JBR-180368 | es_CO |
dc.relation.references | Ahmad, M.; Masood, S.; Sultana, S.; Hadda, T. B.; Bader, A.; Zafar, M. Antioxidant and Nutraceutical Value of Wild Medicinal Rubus Berries. Pak. J. Pharm. Sci. 2015, 28 (1), 241-247. | es_CO |
dc.relation.references | Baby, B.; Antony, P.; Vijayan, R. Antioxidant and Anticancer Properties of Berries. Crit. Rev. Food Sci. Nutr. 2018, 58 (15), 2491-2491-2507. https://doi.org/10.1080/10408398.2017.1329198 | es_CO |
dc.relation.references | Bueno, J.; Ramos-Escudero, F.; Sáez-Plaza, P.; Muñoz, A.; José Navas, M.; Asuero, AgustinG. Analysis and Antioxidant Capacity of Anthocyanin Pigments. Part I: General Considerations Concerning Polyphenols and Flavonoids. Crit. Rev. Anal. Chem. 2012, 42 (2), 102-102-125. https://doi.org/10.1080/10408347.2011.632312 | es_CO |
dc.relation.references | Amawi, H.; Ashby, C. R.; Samuel, T.; Peraman, R.; Tiwari, A. K. Polyphenolic Nutrients in Cancer Chemoprevention and Metastasis: Role of the Epithelial-to-Mesenchymal (EMT) Pathway. Nutrients 2017, 9 (8). https://doi.org/10.3390/nu9080911 | es_CO |
dc.relation.references | Gulzar Ahmad Nayik; Amir Gull. Antioxidants in Fruits: Properties and Health Benefits; 2020 | es_CO |
dc.relation.references | Leopoldini, M.; Russo, N.; Toscano, M. The Molecular Basis of Working Mechanism of Natural Polyphenolic Antioxidants. Food Chem. 2011, 125 (2), 288-306. https://doi.org/10.1016/j.foodchem.2010.08.012 | es_CO |
dc.relation.references | Szymanska R; Pospísil P; Kruk J. Plant-Derived Antioxidants in Disease Prevention 2018. Oxidative medicine and cellular longevity, 2018, 2018, 2068370. https://doi.org/10.1155/2018/2068370 | es_CO |
dc.relation.references | Cherubim, D. J.; Martins, C. V.; Fariña, L.; Lucca, R. A. Polyphenols as Natural Antioxidants in Cosmetics Applications. J. Cosmet. Dermatol. 2020, 19 (1), 33-37. https://doi.org/10.1111/jocd.13093 | es_CO |
dc.relation.references | López-Padilla, A.; Martín, D.; Villanueva Bermejo, D.; Jaime, L.; Ruiz-Rodriguez, A.; Restrepo Flórez, C. E.; Rivero Barrios, D. M.; Fornari, T. Vaccinium Meridionale Swartz Extracts and Their Addition in Beef Burgers as Antioxidant Ingredient. J. Sci. Food Agric. 2018, 98 (1), 377-377-383. https://doi.org/10.1002/jsfa.8483 | es_CO |
dc.relation.references | Katsube, N.; Iwashita, K.; Tsushida, T.; Yamaki, K.; Kobori, M. Induction of Apoptosis in Cancer Cells by Bilberry (Vaccinium Myrtillus) and the Anthocyanins. J. Agric. Food Chem. 2003, 51 (1), 68-75. https://doi.org/10.1021/jf025781x | es_CO |
dc.relation.references | Benedict, S. R. A Reagent for the Detection of Reducing Sugars. J. Biol. Chem. 1909, 5 (5), 485-487. https://doi.org/10.1016/S0021-9258(18)91645-5 | es_CO |
dc.relation.references | Mohamed, E. Laboratory Activities to Introduce Carbohydrates Qualitative Analysis to College Students. World J. Chem. Educ. 2018, 6 (2), 82-86. https://doi.org/10.12691/WJCE-6-2-1 | es_CO |
dc.relation.references | Ainsworth, E. A.; Gillespie, K. M. Estimation of Total Phenolic Content and Other Oxidation Substrates in Plant Tissues Using Folin-Ciocalteu Reagent. Nat. Protoc. 2007, 2 (4), 875-875-877. https://doi.org/10.1038/nprot.2007.102 | es_CO |
dc.relation.references | Pueyo, I. U.; Calvo, M. I. Assay Conditions and Validation of a New UV Spectrophotometric Method Using Microplates for the Determination of Polyphenol Content. Fitoterapia 2009, 80 (8), 465-465-467. https://doi.org/10.1016/j.fitote.2009.06.008 | es_CO |
dc.relation.references | Nenadis, N.; Wang, L.-F.; Tsimidou, M.; Zhang, H.-Y. Estimation of Scavenging Activity of Phenolic Compounds Using the ABTS + Assay. J. Agric. Food Chem. 2004, 52 (15), 4669-4674. https://doi.org/10.1021/jf0400056 | es_CO |
dc.relation.references | Melo Torres, C. P. Rational Approach to Evaluate Interaction Effect on Combination Therapy for Cancer Treatment with Doxorubicin and Non- Traditional Chemotherapeutic Drugs (Metformin, Losartan, Taurine and Salicylic Acid ). 2021 | es_CO |
dc.relation.references | Queiroz, C.; Mendes Lopes, M. L.; Fialho, E.; Valente-Mesquita, V. L. Polyphenol Oxidase: Characteristics and Mechanisms of Browning Control. Food Rev. Int. 2008, 24 (4), 361-375. https://doi.org/10.1080/87559120802089332 | es_CO |
dc.relation.references | Riahi, S.; Moghaddam, A. B.; Ganjali, M. R.; Norouzi, P. Determination Of The Oxidation Potentials Of Pyrogallol And Some Of Its Derivatives: Theory And Experiment. J. Theor. Comput. Chem. 2007, 06 (02), 331-340. Https://Doi.Org/10.1142/S0219633607003015 | es_CO |
dc.relation.references | Alberty, R. A. Standard Apparent Reduction Potentials of Biochemical Half Reactions and Thermodynamic Data on the Species Involved. Biophys. Chem. 2004, 111 (2), 115-122. https://doi.org/10.1016/j.bpc.2004.05.003 | es_CO |
dc.relation.references | Bouchard, A.; Hofland, G. W.; Witkamp, G.-J. Properties of Sugar, Polyol, and Polysaccharide Water-Ethanol Solutions. J. Chem. Eng. Data 2007, 52 (5), 1838-1842. https://doi.org/10.1021/je700190m | es_CO |
dc.relation.references | Cerezo, A. B.; Catunescu, G. M.; González, M. M.; Hornedo-Ortega, R.; Pop, C. R.; Rusu, C. C.; Chirila, F.; Rotar, A. M.; Garcia-Parrilla, M. C.; Troncoso, A. M. Anthocyanins in Blueberries Grown in Hot Climate Exert Strong Antioxidant Activity and May Be Effective against Urinary Tract Bacteria. Antioxidants 2020, 9 (6). https://doi.org/10.3390/antiox9060478 | es_CO |
dc.relation.references | Margraf, T.; Karnopp, A. R.; Rosso, N. D.; Granato, D. Comparison between Folin-Ciocalteu and Prussian Blue Assays to Estimate The Total Phenolic Content of Juices and Teas Using 96-Well Microplates. J. FOOD Sci. 2015, 80 (11), C2397. https://doi.org/10.1111/1750-3841.13077 | es_CO |
dc.relation.references | Cháirez-Ramírez, M. H.; de la Cruz-López, K. G.; García-Carrancá, A. Polyphenols as Antitumor Agents Targeting Key Players in Cancer-Driving Signaling Pathways. Front. Pharmacol. 2021, 12 | es_CO |
dc.relation.references | Çelik, S. E.; Özyürek, M.; Güçlü, K.; Apak, R. Solvent Effects on the Antioxidant Capacity of Lipophilic and Hydrophilic Antioxidants Measured by CUPRAC, ABTS/Persulphate and FRAP Methods. Talanta 2010, 81 (4), 1300-1309. https://doi.org/10.1016/j.talanta.2010.02.025 | es_CO |
dc.relation.references | Rai, Y.; Pathak, R.; Kumari, N.; Sah, D. K.; Pandey, S.; Kalra, N.; Soni, R.; Dwarakanath, B. S.; Bhatt, A. N. Mitochondrial Biogenesis and Metabolic Hyperactivation Limits the Application of MTT Assay in the Estimation of Radiation Induced Growth Inhibition. Sci. Rep. 2018, 8 (1), 1531-1531. https://doi.org/10.1038/s41598-018-19930-w | es_CO |
dc.relation.references | Macdougall, J. Analysis of Dose-Response Studies-Emax Model. In Dose Finding in Drug Development; Ting, N., Ed.; Springer New York: New York, NY, 2006; pp 127-145. https://doi.org/10.1007/0-387-33706-7_9 | es_CO |
dc.relation.references | Gubler, H.; Schopfer, U.; Jacoby, E. Theoretical and Experimental Relationships between Percent Inhibition and IC50 Data Observed in High-Throughput Screening. J. Biomol. Screen. 2013, 18 (1), 1-13. https://doi.org/10.1177/1087057112455219 | es_CO |
dc.relation.references | Maldonado-Celis, M. E.; Arango-Varela, S. S.; Rojano, B. A. Free Radical Scavenging Capacity and Cytotoxic and Antiproliferative Effects of Vaccinium Meridionale Sw. Agains Colon Cancer Cell Lines. Rev. Cuba. Plantas Med. 2014, 19, 172-184 | es_CO |
dc.relation.references | Alara, O. R.; Abdurahman, N. H.; Ukaegbu, C. I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200-214. https://doi.org/10.1016/j.crfs.2021.03.011 | es_CO |
dc.relation.references | Kaur, N.; Aggarwal, P.; Kumar, V.; Kaur, S. Influence of Different Extraction Techniques on the Extraction of Phytochemicals and Antioxidant Activities from Syzygium Cumini (Jamun) Pomace Using Taguchi Orthogonal Array Design: A Qualitative and Quantitative Approach. Biomass Convers. Biorefinery Process. Biog. Mater. Energy Chem. 2022, 1-1-13. https://doi.org/10.1007/s13399-022-02826-1 | es_CO |
dc.relation.references | Agudelo, C. D.; Luzardo-Ocampo, I.; Hernández-Arriaga, A. M.; Rendón, J. C.; Campos-Vega, R.; Maldonado-Celis, M. E. Fermented Non-Digestible Fraction of Andean Berry (Vaccinium Meridionale Swartz) Juice Induces Apoptosis in Colon Adenocarcinoma Cells. Prev. Nutr. Food Sci. 2020, 25 (3), 272-279. https://doi.org/10.3746/pnf.2020.25.3.272 | es_CO |
dc.relation.references | Zapata Vahos, I. C.; Ochoa Agudelo, S.; Alzate Arbeláez, A. F.; Zapata Zapata, A. D.; Rojano, B. A. Vinegar Of Andean Berries (Vaccinium Meridionale Sw): Antioxidant And Antiproliferative Activity In Colon Cancer Cells Sw480. Vitae 2019, 26 | es_CO |
dc.relation.references | Shi, D.; Xie, F.; Zhai, C.; Stern, J. S.; Liu, Y.; Liu, S. The Role of Cellular Oxidative Stress in Regulating Glycolysis Energy Metabolism in Hepatoma Cells. Mol. Cancer 2009, 8 (1), 32. https://doi.org/10.1186/1476-4598-8-32 | es_CO |
dc.relation.references | Alhosin, M.; León-González, A. J.; Dandache, I.; Lelay, A.; Rashid, S. K.; Kevers, C.; Pincemail, J.; Fornecker, L.-M.; Mauvieux, L.; Herbrecht, R.; Schini-Kerth, V. B. Bilberry Extract (Antho 50) Selectively Induces Redox-Sensitive Caspase 3-Related Apoptosis in Chronic Lymphocytic Leukemia Cells by Targeting the Bcl-2/Bad Pathway. Sci. Rep. 2015, 5 (1), 8996. https://doi.org/10.1038/srep08996 | es_CO |
dc.relation.references | Somasagara, R. R.; Hegde, M.; Chiruvella, K. K.; Musini, A.; Choudhary, B.; Raghavan, S. C. Extracts of Strawberry Fruits Induce Intrinsic Pathway of Apoptosis in Breast Cancer Cells and Inhibits Tumor Progression in Mice. PLOS ONE 2012, 7 (10), e47021. https://doi.org/10.1371/journal.pone.0047021 | es_CO |
dc.relation.references | Wlodkowic, D.; Skommer, J.; Darzynkiewicz, Z. Flow Cytometry-Based Apoptosis Detection. In Apoptosis: Methods and Protocols, Second Edition; Erhardt, P., Toth, A., Eds.; Humana Press: Totowa, NJ, 2009; pp 19-32. https://doi.org/10.1007/978-1-60327-017-5_2 | es_CO |
dc.relation.references | Mileo, A. M.; Nisticò, P.; Miccadei, S. Polyphenols: Immunomodulatory and Therapeutic Implication in Colorectal Cancer. Front. Immunol. 2019, 10 | es_CO |
dc.relation.references | Gaviria, M. F. Optimización de La Extracción Asistida Por Microondas En Mezclas Etanólicas de Vaccinium Meridionale y El Estudio de Su Actividad Antioxidante y Antimicrobiana., 2019 | es_CO |
dc.relation.references | Melo Torres, C. P. Implementación Del Ensayo MTT (Bromuro de 3-(3,4 -Dimetiltiazol-2-Il)-2,5- Difeniltetrazolio) En Líneas Celulares Tumorales y Determinación de La Viabilidad Celular de Análogos de Ácidos Nucleico.,2017 | es_CO |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | es_CO |
dc.type.redcol | http://purl.org/redcol/resource_type/TP | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.subject.themes | Química | es_CO |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Tesis/Trabajos de Grado [133]