• español
    • English
  • ¿Qué es el Repositorio Institucional Séneca?
  • Cómo publicar
  • Lineamientos
  • Contáctenos
Ver ítem 
  •   Repositorio Institucional Séneca
  • Facultad de Ingeniería
  • Departamento de Ingeniería de Sistemas y Computación
  • Maestría en Ingeniería de Sistemas y Computación
  • Tesis/Trabajos de Grado
  • Ver ítem
    • español
    • English
  •   Repositorio Institucional Séneca
  • Facultad de Ingeniería
  • Departamento de Ingeniería de Sistemas y Computación
  • Maestría en Ingeniería de Sistemas y Computación
  • Tesis/Trabajos de Grado
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Navegar

Todo SénecaComunidades y ColeccionesAutoresTítulosTemáticasTipos de contenidosPerfil de autor
Esta colecciónFacultades y ProgramasAutoresTítulosTemáticasTipos de contenidos

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Learning recovery strategies for dynamic self-heal in reactive systems

RISMendeley
http://hdl.handle.net/1992/59459
Sanabria Ardila, Mateo
Cardozo Álvarez, NicolásAutoridad Uniandes
2022-06-06
Self-healing applications generally depend on a set of predefined instructions that the system must follow in order to recover from a failure state. Such actions are triggered from predefined hooks in the program. Moreover, self-healing strategies detect failure states based on message response times, or metrics that are not expressive enough to detect different types of failures. Such strategies are usually applied in the context of distributed systems, where the detection of failures is constrained to communication problems, and resolution strategies often consist of replacing complete components. However, current complex systems may reach failure states at a fine granularity that were not anticipated by developers. For example, value range changes for data streaming in IoT systems. To counter these problems, we propose a self-healing framework that learns recovery strategies to heal fine-grained system behavior at run time. We demonstrate and evaluate our healing strategies in a new domain, reactive systems. Our proposal uses monitor predicates to define satisfiability conditions of the system state. Such monitors have functional expressivity and can be defined at run time to detect failure states. Once failure states are detected, we use a Reinforcement Learning-based technique to learn a recovery strategy based on users¿ corrective atomic actions. Finally, to execute the learned strategies we define them as Context-oriented Programming variations that activate at run time whenever the failure state is detected, overwriting the base system behavior with the recovery strategy for that state. We validate the feasibility and effectiveness of our framework through a prototypical reactive application for tracking mouse movements in different scenarios. Our results demonstrate that with just the definition of monitors, the system is indeed able to recover from failure states without a predefine strategy
Self-healing systems
Context-oriented programming
Functional-reactive programming
Reinforcement learning
Trabajo de grado - Maestría

  • Tesis/Trabajos de Grado [458]

Ver Estadísticas de uso
Mostrar el registro completo del ítem

Portada

Thumbnail

Nombre: t2_m.sanabriaa_202210.pdf

[PDF] PDF Open Access[PDF] VER Open Access

Cita

Cómo citar

Cómo citar

Código QR


Carrera 1 # 18A-12

Bogotá - Colombia

Postal Code: 111711

+57 601 3394949 Ext.3322

sisbibli@uniandes.edu.co

i-RUS

i-RUS


Recursos Electrónicos

Recursos

Electrónicos


Biblioguías

Biblioguías


Icono Eventos

Repositorio de

datos de investigación



Redes sociales

  • Facebook
  • twitter
  • youtube
  • instagram
  • whatsapp

Universidad de los Andes | Vigilada Mineducación

Reconocimiento como Universidad: Decreto 1297 del 30 de mayo de 1964.

Reconocimiento personería jurídica: Resolución 28 del 23 de febrero de 1949 Minjusticia.

© - Derechos Reservados Universidad de los Andes