Mostrar el registro sencillo del ítem

dc.contributor.advisorBotero Mejía, Alonso
dc.contributor.authorGonzález Olaya, Walther Leonardo
dc.description.abstractIn quantum information theory, maximally entangled states (MES) are key to implement many well known protocols such as quantum teleportation, quantum error correction, quantum key distribution, among others. The representation theory of the symmetric group provides a mechanism that allows one to generate a wide class of maximally entangled multipartite states. Such states, which we call Kronecker states, belong to the invariant subspace of products of irreducible representations of Sn. The reduced density matrices of such states in each individual subspace are completely mixed, proving that Kronecker states are MES. The purpose of this work is to better understand Kronecker states and their applications in quantum information theory. In particular, we will implement them in four cases: "Superadditivity of classical channel capacity in quantum channels: Hastings, used the invariance of MES in bipartite systems under the action of some elements of composed channels to prove that the minimum output entropy of such channels is subadditive, therefore there is superadditivity of classical channel capacity. We want to build channels where it is possible to exploit the natural invariant property of Kronecker states to achieve superadditivity expanding this behaviour when composing a system with more than two channels. Quantum error correction: In the 5 qubit protocol, codewords can be understood as particular examples of Kronecker states. We want to study the possibility of generalizing the protocol to generic Kronecker states with possible applications to different noise models. Quantum secret sharing: One of the most important characteristics of the codification in this schemes is that different individuals must get no information without help of others; or in density matrix language, reduced density matrices have to be completely mixed, the salient property of Kronecker states. We want to study a possible generalization of the threshold scheme (t,n) that allows one to recover the initial information to selected groups when the codification is done using Kronecker states. Entanglement concentration: Mejía and Botero demonstrated that the entanglement of tripartite states in the W class can be concentrated in Kronecker states of high dimension. We want to better understand the structure of these states and to study how they appear in the entanglement concentration of multipartite states. We expect that the study of these applications will help us to understand in a more general way Kronecker states, pointing to a systematic formalism that establish the generalities behind their applications and draw a path to extend the study to invariant elements in other groups
dc.format.extent21 Paginases_CO
dc.publisherUniversidad de los Andeses_CO
dc.titleApplications of Kronecker states in quantum information theory
dc.typeTrabajo de grado - Maestríaes_CO
dc.publisher.programMaestría en Ciencias - Físicaes_CO
dc.subject.keywordQuantum Information
dc.subject.keywordRepresentation Theory
dc.subject.keywordSymmetric Group
dc.publisher.facultyFacultad de Cienciases_CO
dc.publisher.departmentDepartamento de Físicaes_CO
dc.contributor.juryQuiroga Puello, Luis
dc.contributor.juryPineda, Carlos
dc.description.degreenameMagíster en Ciencias - Físicaes_CO
dc.description.researchareaQuantum Informationes_CO
dc.identifier.instnameinstname:Universidad de los Andeses_CO
dc.identifier.reponamereponame:Repositorio Institucional Sénecaes_CO
dc.relation.references[1] Mark Wilde. From classical to quantum shannon theory. 06 2011.es_CO
dc.relation.references[2] Alonso Botero and José Mejía. Universal and distortion-free entanglement concentration of multiqubit quantum states in the W class. Phys. Rev. A, 98:032326, Sep 2018.es_CO
dc.relation.references[3] J. I. de Vicente, C. Spee, and B. Kraus. Maximally entangled set of multipartite quantum states. Phys. Rev. Lett., 111:110502, Sep 2013.es_CO
dc.relation.references[4] K Audenaert. A digest on representation theory of the symmetric group. 01 2006.es_CO
dc.relation.references[5] Matthias Christandl, Aram W. Harrow, and Graeme Mitchison. Nonzero kronecker coefficients and what they tell us about spectra. Communications in Mathematical Physics, 270:575-585, 03 2007.es_CO
dc.relation.references[6] John Preskil. A course on quantum computation, 2004.es_CO
dc.relation.references[7] Peter W. Shor. Capacities of quantum channels and how to find them. Mathematical Programming, 97(1):311-335, 2003.es_CO
dc.relation.references[8] Peter W. Shor. The additivity conjecture in quantum information theory. Current Developments in Mathematics, 2005, 01 2007.es_CO
dc.relation.references[9] Peter W. Shor. Equivalence of additivity questions in quantum information theory. Communications in Mathematical Physics, 246(3):453-472, Apr 2004.es_CO
dc.relation.references[10] M. B. Hastings. Superadditivity of communication capacity using entangled inputs. Nature Physics, 5:255, 2009.es_CO
dc.relation.references[11] Peter Cromwell, Elisabetta Beltrami, and Marta Rampichini. The mathematical tourist. The Mathematical Intelligencer, 20(1):53-62, Mar 1998.es_CO
dc.relation.references[12] Karin Rietjens. An information theoretical approach to quantum secret sharing schemes. 2004.es_CO
dc.relation.references[13] Amos Beimel. Secret-sharing schemes: A survey. In Coding and Cryptology, pages 11-46, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.es_CO
dc.relation.references[14] M. Hillery, V. Buzek, and A. Berthiaume. Quantum secret sharing. Physical Review A, 59(3):1829-1834, 1999.es_CO
dc.relation.references[15] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature, 299:802, October 1982.es_CO
dc.relation.references[16] K.P.T. Rietjens. An information theoretical approach to quantum secret sharing schemes. masther thesis, 2006.es_CO
dc.relation.references[17] R. W. Hamming. Error detecting and error correcting codes. The Bell System Technical Journal, 29(2):147-160, April 1950.es_CO
dc.relation.references[18] Simon J. Devitt, Kae Nemoto, and William J. Munro. Quantum Error Correction for Beginners. Reports on Progress in Physics, 76(7):076001, July 2013. arXiv: 0905.2794.es_CO
dc.relation.references[19] Daniel Gottesman. Class of quantum error-correcting codes saturating the quantum hamming bound. Phys. Rev. A, 54:1862-1868, Sep 1996.es_CO
dc.relation.references[20] Charles Bennett, Herbert Bernstein, Sandu Popescu, and Benjamin Schumacher. Concentrating partial entanglement by local operations. Physical Review A, 53, 12 1995.es_CO
dc.relation.references[21] Masahito Hayashi and Keiji Matsumoto. Universal distortion-free entanglement concentration. Physical Review A, 75, 10 2002.es_CO
dc.rights.licenceAttribution-NoDerivatives 4.0 Internacional*
dc.rights.licenceAttribution-NoDerivatives 4.0 Internacional*

Ficheros en el ítem


Nombre: Applications of Kronecker states ...

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem