dc.contributor.advisor | Cardona Guio, Alexander | |
dc.contributor.advisor | Reyes Lega, Andrés Fernando | |
dc.contributor.author | Calderón Gómez, Julián David | |
dc.date.accessioned | 2022-11-01T13:29:22Z | |
dc.date.available | 2022-11-01T13:29:22Z | |
dc.date.issued | 2022-06-02 | |
dc.identifier.uri | http://hdl.handle.net/1992/62981 | |
dc.description.abstract | La idea principal de este trabajo es entender las conexiones que existen entre teoría del índice y el problema de implementación de simetrías unitarias en estructuras algebraicas como las álgebras de Clifford y las álgebras de relaciones de anticonmutación canónicas -Álgebras CAR.
Se logra entender, además, la conexión de este índice con otra estructura adicional asociada con las C* álgebras que surgen en este trabajo, como lo es la K-Teoría. Finalmente, se analizan algunos ejemplos motivados desde la física como el modelo Su-Schriefer-Heeger (SSH) y la cadena de Kitaev, los cuales ilustran los dos posibles invariantes que pueden surgir en lo que se conoce como la correspondencia Bulk - Edge (tipo Z y tipo Z_2). | |
dc.format.extent | 111 páginas | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | eng | es_CO |
dc.publisher | Universidad de los Andes | es_CO |
dc.rights.uri | https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf | |
dc.title | Index theory and implementability of unitary representations of CAR algebras | |
dc.title.alternative | Teoría del índice e implementabilidad de representaciones unitarias de álgebras CAR | |
dc.type | Trabajo de grado - Maestría | es_CO |
dc.publisher.program | Maestría en Matemáticas | es_CO |
dc.subject.keyword | Álgebra CAR | |
dc.subject.keyword | Álgebras de Clifford | |
dc.subject.keyword | Transformaciones de Bogoliubov | |
dc.subject.keyword | Correspondencia Bulk - Edge | |
dc.publisher.faculty | Facultad de Ciencias | es_CO |
dc.publisher.department | Departamento de Matemáticas | es_CO |
dc.contributor.jury | Recht, Lázaro | |
dc.contributor.jury | Winklmeier, Monika Anna | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dc.description.degreename | Magíster en Matemáticas | es_CO |
dc.description.degreelevel | Maestría | es_CO |
dc.description.researcharea | Geometría y física matemática. | es_CO |
dc.identifier.instname | instname:Universidad de los Andes | es_CO |
dc.identifier.reponame | reponame:Repositorio Institucional Séneca | es_CO |
dc.identifier.repourl | repourl:https://repositorio.uniandes.edu.co/ | es_CO |
dc.relation.references | P. de la Harpe, Classical Banach-Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space, 1st ed., ser. Lecture notes in mathematics, 285. Springer-Verlag, 1972. | es_CO |
dc.relation.references | P. de la Harpe and V. Jones., An introduction to C*-algebras. Université de Genéve, Jul 1995. | es_CO |
dc.relation.references | I. Gohberg and M. Krein, Introduction to the theory of linear nonselfadjoint operators, ser. Translations of Mathematical Monographs. AMS, 1969. | es_CO |
dc.relation.references | D. Husemoller, Fibre Bundles, 3rd ed., ser. Graduate Texts in Mathematics 20. Springer New York, 1966. | es_CO |
dc.relation.references | B. Lawson and M. Michelsohn, Spin Geometry, ser. Princeton mathematical series volume 38. Princeton University Press, 1990. | es_CO |
dc.relation.references | J. Lesmes and T. Abuabara, Elementos de análisis funcional. Catálogo Público Uniandes, 2010. | es_CO |
dc.relation.references | J. Milnor, Morse Theory, 1st ed., ser. Annals of Mathematic Studies AM-51. Princeton University Press, 1963. | es_CO |
dc.relation.references | R. Plymen and P. Robinson, Spinors in Hilbert Space, ser. Cambridge Tracts in Mathematics 114. Cambridge University Press, 1994. | es_CO |
dc.relation.references | E. Prodan and H. Schulz-Baldes, Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics, 1st ed., ser. Mathematical Physics Studies. Springer International Publishing, 2016. | es_CO |
dc.relation.references | M. Reed and B. Simon, Functional Analysis, Volume 1, ser. Methods of Modern Mathematical Physics. Academic Press, 1981, vol. Volume 1. | es_CO |
dc.relation.references | J. Roe, Winding Around: The Winding Number in Topology, Geometry, and Analysis, ser. Student Mathematical Library. American Mathematical Society, 2015. | es_CO |
dc.relation.references | M. Rordam, F. Larsen, and N. Laustsen, Introduction to K-theory for C* algebras, 1st ed., ser. London Mathematical Society Student Texts. Cambridge University Press, 2000. | es_CO |
dc.relation.references | V. Sunder, Functional Analysis: Spectral Theory, ser. Birkhäuser Advanced Texts Basler Lehrbücher. Birkhäuser Basel, 1998. | es_CO |
dc.relation.references | J. Varilly, H. Figueroa, and J. Gracia-Bondia, Elements of Noncommutative Geometry (Birkhäuser Advanced Texts Basler Lehrbücher), 1st ed. Birkhäuser Boston, 2000. | es_CO |
dc.relation.references | F. Arici and B. Mesland, Toeplitz extensions in noncommutative topology and mathematical
physics, in Trends in Mathematics. Springer International Publishing, 2020, pp. 3-29. | es_CO |
dc.relation.references | R. Bott, The stable homotopy of the classical groups, Annals of Mathematics, vol. 70, no. 2, pp. 313-337, 1959. | es_CO |
dc.relation.references | J. Calderon-Garcia and A. Reyes-Lega, Majorana fermions and orthogonal complex structures, Modern Physics Letters A, vol. 33, no. 14, p. 1840001, 2018. | es_CO |
dc.relation.references | A. Carey, Some infinite dimensional groups and bundles, Publications of the Research Institute for Mathematical Sciences, vol. 20, no. 6, pp. 1103-1117, 1984. | es_CO |
dc.relation.references | A. Carey and D. M. O¿Brien, Automorphisms of the infinite dimensional Clifford algebra and the Atiyah-Singer mod 2 index, Topology, vol. 22, 1983. | es_CO |
dc.relation.references | A. Carey, D. M. O¿Brien, and C. Hurst, Automorphisms of the canonical anticommutation relations and index theory, Functional Analysis, vol. 48, 1982. | es_CO |
dc.relation.references | A. Carey, J. Phillips, and H. Schulz-Baldes, Spectral flow for skew-adjoint fredholm operators, Journal of Spectral Theory, vol. 9, no. 1, pp. 137-170, 2019. | es_CO |
dc.relation.references | A. Devinatz and M. Shinbrot, General Weiner - Hopf operators, Transactions of the American Mathematical Society, vol. 145, 1969. | es_CO |
dc.relation.references | J. Espinoza and B. Uribe, Topological properties of the unitary group, JP Journal of Geometry and Topology, vol. 16, pp. 45-55, 2014. | es_CO |
dc.relation.references | A. Y. Kitaev, Unpaired majorana fermions in quantum wires, Physics-Uspekhi, vol. 44, no. 10S, pp. 131-136, 2001. | es_CO |
dc.relation.references | N. Kuiper, The homotopy type of the unitary group of hilbert space, Topology, vol. 3, no. 1, pp. 19-30, 1965. | es_CO |
dc.relation.references | G. Murphy, Continuity of the spectrum and spectral radius, Proceedings of the American Mathematical Society, vol. 82, no. 4, pp. 619-621, 1981. | es_CO |
dc.relation.references | S. Pandey, Symmetrically-normed ideals and characterizations of absolutely norming operators, Ph.D. dissertation, University of Waterloo, 2018. | es_CO |
dc.relation.references | A. Ramsay, The Mackey-Glimm dichotomy for foliations and other polish groupoids, Journal of Functional Analysis, vol. 94, no. 2, pp. 358-374, 1990. | es_CO |
dc.relation.references | A. F. Reyes-Lega, Some Aspects of operator algebras in quantum physics, in Geometric, Algebraic and Topological Methods for Quantum Field Theory. World Scientific, sep 2016. | es_CO |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | es_CO |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.subject.themes | Matemáticas | es_CO |