Emergent Features in Rational Ehrhart Quasi-Polynomials
2022-11-28
Ehrhart Theory presents a tool for the study of integer dilations of integral polytopes (convex polytopes whose vertices all have integer coordinates) via an associated polynomial in the dilation factor. This is then generalized to rational polytopes (allowing vertices to have rational coordinates) yielding a quasi-polynomial in the dilation factor. Linke presented in 2011 a further generalization by allowing the dilation to be rational which again results in a quasi-polynomial in the dilation factor whose coefficients are piecewise polynomial. We herein present our first foray into this field, beginning with a careful review of the literature and all the necessary concepts before tying it all up with a fleshed-out example and the beginnings of an exploration into the form a particular rational Ehrhart quasi-polynomial takes and the information about its associated polytope that may be gleaned from it. La Teoría de Ehrhart presenta una herramienta para el estudio de dilataciones enteras de politopos integrales (politopos convexos cuyos vértices tienen todos coordenadas enteras) a través de un polinomio asociado en el factor de dilatación. Esto luego se generaliza a politopos racionales (permitiendo que los vértices tengan coordenadas racionales), lo cual produce un cuasi-polinomio en el factor de dilatación. Linke presentó en 2011 una generalización adicional al permitir que la dilatación sea racional, lo cual nuevamente da como resultado un cuasi-polinomio en el factor de dilatación cuyos coeficientes son polinomios por partes. Presentamos aquí nuestra primera incursión en este campo, comenzando con una revisión cuidadosa de la literatura y todos los conceptos necesarios antes de concluir con un ejemplo detallado y los comienzos de una exploración en la forma que toma un cuasi-polinomio racional de Ehrhart particular y la información sobre su politopo asociado que se puede extraer de él.
- Tesis/Trabajos de Grado [300]