Mostrar el registro sencillo del ítem

dc.contributor.advisorBogart, Tristram
dc.contributor.authorMaldonado Baracaldo, Nicolás
dc.date.accessioned2023-01-31T20:07:52Z
dc.date.available2023-01-31T20:07:52Z
dc.date.issued2022-11-28
dc.identifier.urihttp://hdl.handle.net/1992/64380
dc.description.abstractEhrhart Theory presents a tool for the study of integer dilations of integral polytopes (convex polytopes whose vertices all have integer coordinates) via an associated polynomial in the dilation factor. This is then generalized to rational polytopes (allowing vertices to have rational coordinates) yielding a quasi-polynomial in the dilation factor. Linke presented in 2011 a further generalization by allowing the dilation to be rational which again results in a quasi-polynomial in the dilation factor whose coefficients are piecewise polynomial. We herein present our first foray into this field, beginning with a careful review of the literature and all the necessary concepts before tying it all up with a fleshed-out example and the beginnings of an exploration into the form a particular rational Ehrhart quasi-polynomial takes and the information about its associated polytope that may be gleaned from it.
dc.description.abstractLa Teoría de Ehrhart presenta una herramienta para el estudio de dilataciones enteras de politopos integrales (politopos convexos cuyos vértices tienen todos coordenadas enteras) a través de un polinomio asociado en el factor de dilatación. Esto luego se generaliza a politopos racionales (permitiendo que los vértices tengan coordenadas racionales), lo cual produce un cuasi-polinomio en el factor de dilatación. Linke presentó en 2011 una generalización adicional al permitir que la dilatación sea racional, lo cual nuevamente da como resultado un cuasi-polinomio en el factor de dilatación cuyos coeficientes son polinomios por partes. Presentamos aquí nuestra primera incursión en este campo, comenzando con una revisión cuidadosa de la literatura y todos los conceptos necesarios antes de concluir con un ejemplo detallado y los comienzos de una exploración en la forma que toma un cuasi-polinomio racional de Ehrhart particular y la información sobre su politopo asociado que se puede extraer de él.
dc.format.extent61 páginases_CO
dc.format.mimetypeapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherUniversidad de los Andeses_CO
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.titleEmergent Features in Rational Ehrhart Quasi-Polynomials
dc.title.alternativeCaracterísticas emergentes en los cuasi-polinomios racionales de Ehrhart
dc.typeTrabajo de grado - Pregradoes_CO
dc.publisher.programMatemáticases_CO
dc.subject.keywordEhrhart
dc.subject.keywordPolitopo
dc.subject.keywordPolinomio
dc.subject.keywordCuasi-polinomio
dc.subject.keywordReticulo
dc.subject.keywordPermutaedro
dc.publisher.facultyFacultad de Cienciases_CO
dc.publisher.departmentDepartamento de Matemáticases_CO
dc.contributor.juryRau, Johannes
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.description.degreenameMatemáticoes_CO
dc.description.degreelevelPregradoes_CO
dc.identifier.instnameinstname:Universidad de los Andeses_CO
dc.identifier.reponamereponame:Repositorio Institucional Sénecaes_CO
dc.identifier.repourlrepourl:https://repositorio.uniandes.edu.co/es_CO
dc.relation.referencesFederico Ardila, Matthias Beck, and Jodi McWhirter. The arithmetic of Coxeter permutahedra. In: Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales 44.173 (Dec. 2021), pp. 1152-1166. issn: 23824980. doi: 10.18257/RACCEFYN.1189.es_CO
dc.relation.referencesFederico Ardila, Anna Schindler, and Andrés R Vindas-Meléndez. The equivariant volumes of the permutahedron. In: Discrete & Computational Geometry 65 (2021), pp. 618-635. doi: https: //doi.org/10.1007/s00454-019-00146-2. url: https://arxiv. org/abs/1803.02377.es_CO
dc.relation.referencesFederico Ardila, Mariel Supina, and Andrés R Vindas-Meléndez. The equivariant Ehrhart theory of the permutahedron. In: Proceedings of the American Mathematical Society 148 (2020), pp. 5091- 5107. doi: https://doi.org/10.1090/proc/15113. url: https: //arxiv.org/abs/1911.11159.es_CO
dc.relation.referencesMatthias Beck, Sophia Elia, and Sophie Rehberg. Rational Ehrhart Theory. In: Seminaire Lotharingien de Combinatoire 86B (2022). url: https://arxiv.org/abs/2110.10204.es_CO
dc.relation.referencesMatthias Beck and Sinai Robins. Computing the Continuous Discretely. 2nd. Undergraduate Texts in Mathematics. New York, NY: Springer New York, 2015. isbn: 978-1-4939-2968-9. doi: 10. 1007/978-1-4939-2969-6. url: http://link.springer.com/ 10.1007/978-1-4939-2969-6.es_CO
dc.relation.referencesFelix Breuer. An Invitation to Ehrhart Theory: Polyhedral Geometry and its Applications in Enumerative Combinatorics. In: Computer Algebra and Polynomials. Springer Cham, May 2014. Chap. 1, pp. 1-29. doi: 10.48550/arxiv.1405.7647. url: https: //arxiv.org/abs/1405.7647v2.es_CO
dc.relation.referencesJesús Antonio De Loera. Easy-to-Explain but Hard-to-Solve Problems About Convex Polytopes. 2012. url: http : / / www . math . ucdavis.edu/Ë¿deloera/1.es_CO
dc.relation.referencesBranko Grünbaum. Convex Polytopes. Ed. by Volker Kaibel, Victor Klee, and Günter M. Ziegler. Graduate Texts in Mathematics. New York, NY: Springer New York, 2003. isbn: 978-0-387- 40409-7. doi: 10.1007/978-1-4613-0019-9. url: http://link. springer.com/10.1007/978-1-4613-0019-9.es_CO
dc.relation.referencesEva Linke. Rational Ehrhart quasi-polynomials. In: Journal of Combinatorial Theory, Series A 118.7 (Oct. 2011), pp. 1966-1978. issn: 0097-3165. doi: 10.1016/J.JCTA.2011.03.007.es_CO
dc.relation.referencesPBS Infinite Series. Proving Pick's Theorem. 2017. url: https:// www.youtube.com/watch?v=bYW1zOMCQno&t=1s.es_CO
dc.relation.referencesDavid Sharpe. Rings and Factorization. Cambridge University Press, Aug. 1987. isbn: 9780521330725. doi: 10.1017/CBO9780511565960. url: https://www.cambridge.org/core/product/identifier/ 9780511565960/type/book.es_CO
dc.relation.referencesN. J. A. Sloane. A138464. 2008. url: https://oeis.org/A138464.es_CO
dc.relation.referencesAlan Stapledon. Equivariant Ehrhart Theory. In: Advances in Mathematics 226.4 (2011), pp. 3622-3654. doi: https://doi.org/ 10.1016/j.aim.2010.10.019. url: https://arxiv.org/abs/ 1003.5875.es_CO
dc.relation.referencesTerence Tao. Conversions between standard polynomial bases | What's new. 2019. url: https://terrytao.wordpress.com/2019/04/ 07/conversions-between-standard-polynomial-bases/.es_CO
dc.relation.referencesValue of Vandermonde Determinant/Formulation 1. url: https : / / proofwiki . org / wiki / Value _ of _ Vandermonde _ Determinant / Formulation_1.es_CO
dc.relation.referencesGünter M. Ziegler. Lectures on Polytopes. Vol. 152. Graduate Texts in Mathematics. New York, NY: Springer New York, 1995. isbn: 978-0-387-94365-7. doi: 10.1007/978-1-4613-8431-1. url: http://link.springer.com/10.1007/978-1-4613-8431-1.es_CO
dc.relation.referencesspacematt. Pick's theorem: The wrong, amazing proof. 2021. url: https://www.youtube.com/watch?v=uh-yRNqLpOg.es_CO
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentTextes_CO
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenceAttribution-NoDerivatives 4.0 Internacional*
dc.subject.themesMatemáticases_CO


Ficheros en el ítem

Thumbnail

Nombre: Emergent_Features_in_Rational_ ...

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem