Mostrar el registro sencillo del ítem

dc.contributor.advisorKelkar, Neelima Govind
dc.contributor.authorCalvachi Salas, Carlos Alberto
dc.descriptionProject in theoretical nuclear physics. A literature survey was performed with calculations on S-factors performed computationally.
dc.description.abstractDespite the vast success of nuclear astrophysics in predicting the relative composition of the lightest elements in the early Universe, current theoretical and experimental knowledge of reactions at astrophysical low energies requires severe improvement. This work is centered in calculating the S-factor, which is a relevant quantity for low energy extrapolation. Initially, a literature survey is performed to present a diverse selection of models, which include empirical, potential, microscopical and R-matrix approaches. These models useful for S-factor computation at recurrent astrophysical environments, which generally comprehend Big Bang, stellar, explosive and exotic nucleosynthesis. Then, S-factor experimental data of relevant reactions is selected to be contrasted with predictions of potential and empirical models. Additionally, the effects of resonances and electron screening are analyzed for improving and consolidating the S-factor estimation.
dc.description.abstractA pesar del gran éxito de la astrofísica nuclear en la predicción de la composición relativa de los elementos más ligeros en el Universo temprano, el conocimiento teórico y experimental de las reacciones a energías astrofísicas bajas requiere una mejora sustancial. Este trabajo se centra en el cálculo del factor S, que es una cantidad relevante para la extrapolación a bajas energías. Inicialmente, una revisión de literatura es realizada con el fin de presentar una diversa selección de modelos, que incluye las aproximaciones empíricas, potencial, microscópica y de matriz R. Estos modelos son útiles para el cómputo del factor S en ambientes astrofísicos usuales, los cuales comprenden en general nucleosíntesis en ambientes como el Big Bang, las estrellas y de tipo exótico y explosivo. En seguida, los datos experimentales del factor S son contrastados con predicciones de modelos potenciales y empíricos. Adicionalmente, los efectos de las resonancias, así como del apuntalamiento electrónico, son analizados para mejorar y consolidar la estimación del factor S.
dc.format.extent160 páginases_CO
dc.publisherUniversidad de los Andeses_CO
dc.titleAstrophysical S-factor calculation for selected reactions
dc.typeTrabajo de grado - Pregradoes_CO
dc.subject.keywordNuclear astrophysics
dc.subject.keywordAstrophysical S-factor
dc.subject.keywordLiterature survey
dc.subject.keywordNuclear reactions
dc.subject.keywordResonant phenomena
dc.subject.keywordScreening effect
dc.subject.keywordAstrophysical environments
dc.subject.keywordExperimental data fitting
dc.publisher.facultyFacultad de Cienciases_CO
dc.publisher.departmentDepartamento de Físicaes_CO
dc.contributor.juryNowakowski, Marek
dc.identifier.instnameinstname:Universidad de los Andeses_CO
dc.identifier.reponamereponame:Repositorio Institucional Sénecaes_CO
dc.relation.references[1] J. L. Basdevant, J. Rich, and M. Spiro. Fundamentals in Nuclear Physics: From Nuclear Structure to Cosmology. Springer New York, NY, 2004.es_CO
dc.relation.references[2] K. Heyde. Basic Ideas and Concepts in Nuclear Physics: An Introductory Approach. IOP Publishing, 2004.es_CO
dc.relation.references[3] A. Bohr and B. R. Mottelson. Nuclear structure. World Scientific, 1998.es_CO
dc.relation.references[4] C. Iliadis. Nuclear Physics of Stars. Wiley-VCH, 2015.es_CO
dc.relation.references[5] C. J. Joachain. Quantum collision theory. North-Holland Publishing, 1975.es_CO
dc.relation.references[6] R. G. Newton. Quantum Physics: A Text for Graduate Students. Graduate Texts in Contemporary Physics. Springer-Verlag, 2002.es_CO
dc.relation.references[7] R. Dick. Advanced Quantum Mechanics: Materials and photons. Springer Cham, 2016.es_CO
dc.relation.references[8] O. Iwamoto, N. Iwamoto, K. Shibata, A. Ichihara, S. Kunieda, F. Minato, and S. Nakayama. Status of JENDL. EPJ Web of Conferences, 239(09002), 2020.es_CO
dc.relation.references[9] P. Descouvemont and D. Baye. The R-matrix theory. Reports on Progress in Physics, 73(036301), 2010.es_CO
dc.relation.references[10] D. T. Tran, H. J. Ong, G. Hagen, T. D. Morris, N. Aoi, T. Suzuki, Y. Kanada-En¿yo, L. S. Geng, S. Terashima, I. Tanihata, and et al. Evidence for prevalent Z = 6 magic number in neutron-rich carbon isotopes. Nature Communications, 9(1594), 2018.es_CO
dc.relation.references[11] J. M. Blatt and V. F. Weisskopf. Theoretical nuclear physics. John Wiley & Sons, 1952.es_CO
dc.relation.references[12] C. Simenel, R. Keser, A. S. Umar, and V. E. Oberacker. Microscopic study of 16O+16O fusion. Physical Review C, 88(024617), 2013.es_CO
dc.relation.references[13] C. A. Bertulani. Nuclear Reactions, 2010. arXiv:0908.3275v2.es_CO
dc.relation.references[14] C. A. Bertulani and A. Bonaccorso. Direct Nuclear Reactions, 2022. arXiv:2201.00433.es_CO
dc.relation.references[15] C. R. Brune and B. Davids. Radiative Capture Reactions in Astrophysics. Annual Review of Nuclear and Particle Science, 65:87¿112, 2015.es_CO
dc.relation.references[16] Y. Xu, K. Takahashi, S. Goriely, M. Arnould, M. Ohta, and H. Utsunomiya. NACRE II: an update of the NACRE compilation of charged-particle-induced thermonuclear reaction rates for nuclei with mass number A < 16. Nuclear Physics A, 918:61¿169, 2013.es_CO
dc.relation.references[17] T. R. Whitehead, T. Poxon-Pearson, F. M. Nunes, and G. Potel. Prediction for (p, n) charge-exchange reactions with uncertainty quantification. Physical Review C, 105(054611), 2022.es_CO
dc.relation.references[18] M. Ueda, A. J. Sargeant, M. P. Pato, and M. S. Hussein. Resonances and thermonuclear reaction rates for charged particle collisions. Physical Review C, 70(025802), 2004.es_CO
dc.relation.references[19] H. J. Haubold and D. Kumar. Extension of thermonuclear functions through the pathway model including Maxwell¿Boltzmann and Tsallis distributions. Astroparticle Physics, 29(1):70¿76, 2008.es_CO
dc.relation.references[20] M. Ueda, A. J. Sargeant, M. P. Pato, and M. S. Hussein. Evaluation of effective astrophysical S factor for non-resonant reactions. Progress of Theoretical Physics Supplement, 146:634¿635, 2002.es_CO
dc.relation.references[21] S. Kimura and A. Bonasera. Gamow peak approximation near strong resonances. Physical Review C, 87(058801), 2013.es_CO
dc.relation.references22] A. Coc and E. Vangioni. Big-Bang Nucleosynthesis with updated nuclear data. Journal of Physics: Conference Series, 202(012001), 2010.es_CO
dc.relation.references[23] C. Patrignani et. al (Particle Data Group). Review of Particle Physics. Chinese Physics C, 40(100001), 2016.es_CO
dc.relation.references[24] C. A. Bertulani. Big Bang Nucleosynthesis and the Lithium Problem. Journal of Physics: Conference Series, 1291(012002), 2019.es_CO
dc.relation.references[25] R. V. Wagoner, W. A. Fowler, and F. Hoyle. On the Synthesis of Elements at Very High Temperatures. The Astrophysical Journal, 148:3¿49, 1967.es_CO
dc.relation.references[26] H. Su-Qing, W. Kai-Su, C. Yong-Shou, S. Neng-Chuan, and L. Zhi-Hong. The Main Path to C, N, O Elements in Big Bang Nucleosynthesis. Chinese Physics Letters, 27(082601), 2010.es_CO
dc.relation.references[27] E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle. Synthesis of the Elements in Stars. Reviews of Modern Physics, 29(4):547¿650, 1957.es_CO
dc.relation.references[28] A. A. Arsentieva and I. I. Shevchenko. Host Stars of Planets on the Hertzsprung¿Russell Diagram. Astronomy Letters, 47(9):651¿660, 2021.es_CO
dc.relation.references[29] W. Kundt. Astrophysics: A New Approach. Astronomy and Astrophysics Library. Springer Berlin, Heidelberg, 2005.es_CO
dc.relation.references[30] C. A. Bertulani and T. Kajino. Frontiers in nuclear astrophysics. Progress in Particle and Nuclear Physics, 89:56¿100, 2016.es_CO
dc.relation.references[31] W. A. Fowler. Completion of the Proton-Proton Reaction Chain and the Possibility of Energetic Neutrino Emission by Hot Stars. The Astrophysical Journal, 127:551¿556, 1958.es_CO
dc.relation.references[32] A. Coc. Variation of fundamental constants and the triple- alpha reaction in Population III stars and BBN. Journal of Physics: Conference Series, 337(012037), 2012.es_CO
dc.relation.references[33] M. Wiescher, J. Görres, and H. Schatz. Break-out reactions from the CNO cycles. Journal of Physics G: Nuclear and Particle Physics, 25(6):R133¿R161, 1999.es_CO
dc.relation.references[34] M. Pignatari, R. Hirschi, M. Wiescher, R. Gallino, M. Bennett, M. Beard, C. Fryer, F. Herwig, G. Rockefeller, and F. X. Timmes. The 12C+12C reaction and the impact on nucleosynthesis in massive stars. The Astrophysical Journal, 762(1):31, 2012.es_CO
dc.relation.references[35] M. Notani, H. Esbensen, X. Fang, B. Bucher, P. Davies, C. L. Jiang, L. Lamm, C. J. Lin, C. Ma, E. Martin, and et al. Correlation between the 12C + 12C, 12C + 13C, and 13C + 13C fusion cross sections. Physical Review C, 85(014607), 2012.es_CO
dc.relation.references[36] N. T. Zhang, X. Y. Wang, D. Tudor, B. Bucher, I. Burducea, H. Chen, Z. J. Chen, D. Chesneanu, A. I. Chilug, L. R. Gasques, and et al. Constraining the 12C + 12C astrophysical S-factors with the 12C + 13C measurements at very low energies. Physics Letters B, 801(135170), 2020.es_CO
dc.relation.references[37] M. F. El Eid, B. S. Meyer, and L.-S. The. Evolution of Massive Stars Up to the End of Central Oxygen Burning. The Astrophysical Journal, 611(1):452¿465, 2004.es_CO
dc.relation.references[38] A. Kuronen, J. Keinonen, and P. Tikkanen. Cross section of 16O + 16O near the Coulomb barrier. Physical Review C, 35(2):591¿596, 1987.es_CO
dc.relation.references[39] J. Thomas, Y. T. Chen, S. Hinds, D. Meredith, and M. Olson. Sub-barrier fusion of the oxygen isotopes: A more complete picture. Physical Review C, 33(5):1679¿1689, 1986.es_CO
dc.relation.references[40] S. Y. Torilov, N. A. Maltsev, and V. I. Zherebchevsky. Studying Low-Energy Resonances in the 12C + 16O system. Bulletin of the Russian Academy of Sciences: Physics, 85(5):548¿551, 2021.es_CO
dc.relation.references[41] Y.-D. Chan, H. Bohn, R. Vandenbosch, R. Sielemann, J. G. Cramer, K. G. Bernhardt, H. C. Bhang, and D. T. Chiang. Influence of Extra Neutrons Added to the 12C + 16O System: Gross Structures in ¿- ray Yields Following the 13C + 16O and 12C + 18O reactions. Physical Review Letters, 42(11):687¿690, 1979.es_CO
dc.relation.references[42] F. Kaeppeler, M. Wiescher, U. Giesen, J. Goerres, I. Baraffe, M. El Eid, C. M. Raiteri, M. Busso, R. Gallino, M. Limongi, and et al. Reaction Rates for 18O(¿,¿)22Ne, 22Ne(¿,¿)26Mg, and 22Ne(¿,n)25Mg in Stellar Helium Burning and s-Process Nucleosynthesis in Massive Stars. The As- trophysical Journal, 437:396¿409, 1994.es_CO
dc.relation.references[43] W. D. Arnett. Advanced evolution of massive stars. V. Neon burning. The Astrophysical Journal, 193:169¿176, 1974.es_CO
dc.relation.references[44] G. Lotay, D. T. Doherty, R. V. Janssens, D. Seweryniak, H. M. Albers, S. Almaraz-Calderon, M. P. Carpenter, A. E. Champagne, C. J. Chiara, C. R. Hoffman, and et al. Revised decay properties of the key 93-keV resonance in the 25Mg(p,¿) reaction and its influence on the MgAl cycle in astrophysical environments. Physical Review C, 105(L042801), 2022.es_CO
dc.relation.references[45] D. Bodansky, D. D. Clayton, and W. A. Fowler. Nucleosynthesis During Silicon Burning. Physical Review Letters, 20(4):161¿164, 1968.es_CO
dc.relation.references[46] G. Montagnoli, A. M. Stefanini, C. L. Jiang, G. Colucci, A. Goasduff, D. Brugnara, M. Mazzocco, M. Siciliano, F. Scarlassara, L. Corradi, and et al. Study of fusion hindrance in the system 12C + 24Mg. Journal of Physics: Conference Series, 1643(012098), 2020.es_CO
dc.relation.references[47] N. Maroufi, V. Dehghani, and S. A. Alavi. Alpha and cluster decay of some deformed heavy and superheavy nuclei. Nuclear Physics A, 983:77¿89, 2019.es_CO
dc.relation.references[48] F. Käppeler. s-Process nucleosynthesis and the interior of Red Giants. Nuclear Physics A, 752:500¿509, 2005.es_CO
dc.relation.references[49] J. C. Lattanzio and M. A. Lugaro. What we do and do not know about the s-process in AGB stars. Nuclear Physics A, 758:477¿484, 2005.es_CO
dc.relation.references[50] Y.-Z. Qian, P. Vogel, and G. J. Wasserburg. Probing r-process Production of Nuclei Beyond 209Bi with Gamma Rays. The Astrophysical Journal, 524(1):213¿219, 1999.es_CO
dc.relation.references[51] S. Wanajo, M. Tamamura, N. Itoh, K. Nomoto, Y. Ishimaru, T. C. Beers, and S. Nozawa. The r- Process in Supernova Explosions from the Collapse of O-Ne-Mg Cores. The Astrophysical Journal, 593(2):968¿979, 2003.es_CO
dc.relation.references[52] S. E. Woosley and R. D. Hoffman. The alpha -Process and the r-Process. The Astrophysical Journal, 395:202¿239, 1992.es_CO
dc.relation.references[53] T. Suzuki, S. Shibagaki, T. Yoshida, T. Kajino, and T. Otsuka. ¿-decay Rates for Exotic Nuclei and r-process Nucleosynthesis up to Thorium and Uranium. The Astrophysical Journal, 859(133), 2018.es_CO
dc.relation.references[54] B. S. Meyer. r-Process Nucleosynthesis without Excess Neutrons. Physical Review Letters, 89(231101), 2002.es_CO
dc.relation.references[55] B. S. Meyer, G. C. McLaughlin, and G. M. Fuller. Neutrino capture and r-process nucleosynthesis. Physical Review C, 58(6):3696¿3710, 1998.es_CO
dc.relation.references[56] K. Langanke, G. Martínez-Pinedo, and R. G. T. Zegers. Electron capture in stars. Reports on Progress in Physics, 84(066301), 2021.es_CO
dc.relation.references[57] S. Harissopulos, A. Lagoyannis, A. Spyrou, C. Zarkadas, S. Galanopoulos, G. Perdikakis, H.-W. Becker, C.Rolfs,F.Strieder,R.Kunz,andetal. Protonandalpha-particlecapturereactionsatsub-Coulomb energies relevant to the p process. Journal of Physics G: Nuclear and Particle Physics, 31(10):S1417¿ S1420, 2005.es_CO
dc.relation.references[58] S. J. Quinn, A. Spyrou, A. Simon, A. Battaglia, M. Couder, P. A. DeYoung, A. C. Dombos, X. Fang, J. Görres, A. Kontos, and et al. Probing the production mechanism of the light p-process nuclei. Physical Review C, 88(011603(R)), 2013.es_CO
dc.relation.references[59] J. R. De Laeter. Abundances for p-process nucleosynthesis. Physical Review C, 77(045803), 2008.es_CO
dc.relation.references[60] N. N. Le, N. N. Duy, and N. Q. Hung. Examination of ¿-induced fusion reactions relevant to the production of p-nuclei. The European Physical Journal A, 57(187), 2021.es_CO
dc.relation.references[61] H. Schatz, A. Aprahamian, V. Barnard, L. Bildsten, A. Cumming, M. Ouellette, T. Rauscher, F.-K. Thielemann, and M. Wiescher. End Point of the rp Process on Accreting Neutron Stars. Physical Review Letters, 86(16):3471¿3474, 2001.es_CO
dc.relation.references[62] S. Harissopulos, A. Spyrou, A. Lagoyannis, C. Zarkadas, H.-W. Becker, C. Rolfs, F. Strieder, J. W. Hammer, A. Dewald, K.-O. Zell, and et al. Systematic measurements of proton- and alpha-capture cross sections relevant to the modelling of the p process. Nuclear Physics A, 758:505¿508, 2005.es_CO
dc.relation.references[63] G. G. Kiss, T. Szücs, G. Gyürky, Z. Fülöp, J. Farkas, Z. Kertész, E. Somorjai, M. Laubenstein, C. Fröhlich, T. Rauscher, and et al. Activation method combined with characteristic X-ray counting: A possibility to measure (¿, ¿) cross sections on heavy p-nuclei. Nuclear Physics A, 867(1):52¿65, 2011.es_CO
dc.relation.references[64] B.-S. Cai, G.-S. Chen, C.-X. Yuan, and J.-J. He. Shell-model study on properties of proton dripline nuclides with Z, N = 30-50 including uncertainty analysis. Chinese Physics C, 46(084104), 2022.es_CO
dc.relation.references[65] B. A. Brown, R. R. Clement, H. Schatz, A. Volya, and W. A. Richter. Proton drip-line calculations and the rp process. Physical Review C, 65(045802), 2002.es_CO
dc.relation.references[66] A. Arcones, D. W. Bardayan, T. C. Beers, L. A. Bernstein, J. C. Blackmon, B. Messer, B. A. Brown, E. F. Brown, C. R. Brune, A. E. Champagne, and et al. White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics. Progress in Particle and Nuclear Physics, 94:1¿67, 2017.es_CO
dc.relation.references[67] J. Carlson, M. P. Carpenter, R. Casten, C. Elster, P. Fallon, A. Gade, C. Gross, G. Hagen, A. C. Hayes, D. W. Higinbotham, and et al. White paper on nuclear astrophysics and low-energy nuclear physics, Part 2: Low-energy nuclear physics. Progress in Particle and Nuclear Physics, 94:68¿124, 2017.es_CO
dc.relation.references[68] G. G. Adamian and N. V. Antonenko. Optimal ways to produce heavy and superheavy nuclei. The European Physical Journal A, 58(111), 2022.es_CO
dc.relation.references[69] B. R. Barrett, P. Navrátil, and J. P. Vary. Ab initio no core shell model. Progress in Particle and Nuclear Physics, 69:131¿181, 2013.es_CO
dc.relation.references[70] M. Freer, H. Horiuchi, Y. Kanada-En¿yo, D. Lee, and U.-G. Meißner. Microscopic clustering in light nuclei. Reviews of Modern Physics, 90(035004), 2018.es_CO
dc.relation.references[71] J. Dohet-Eraly, P. Navrátil, S. Quaglioni, W. Horiuchi, G. Hupin, and F. Raimondi. 3He(¿, ¿)7Be and 3H(¿,¿)7Li astrophysical S factors from the no-core shell model with continuum. Physics Letters B, 757:430¿436, 2016.es_CO
dc.relation.references[72] P. Navratil, C. A. Bertulani, and E. Caurier. 7Be(p,¿)8B S-factor from ab initio wave functions. Journal of Physics: Conference Series, 49:15¿20, 2006.es_CO
dc.relation.references[73] M. C. Atkinson, P. Navrátil, G. Hupin, K. Kravvaris, and S. Quaglioni. Ab initio calculation of the ¿ decay from 11Be to a 10Be + p resonance. Physical Review C, 105(054316), 2022.es_CO
dc.relation.references[74] L. E. Marcucci, K. M. Nollett, R. Schiavilla, and R. B. Wiringa. Modern theories of low-energy astrophysical reactions. Nuclear Physics A, 777:111¿136, 2006.es_CO
dc.relation.references[75] L. V. Grigorenko, B. V. Danilin, V. D. Efros, N. B. Shul¿gina, and M. V. Zhukov. Structure of the 8Li and 8B nuclei in an extended three-body model and astrophysical S17 factor. Physical Review C, 57(5):R2099¿R2103, 1998.es_CO
dc.relation.references[76] N. Le Anh and B. Minh Loc. Low-energy 7Li(n,¿)8Li and 7Be(p,¿)8B radiative capture reactions within the Skyrme Hartree-Fock approach. Physical Review C, 106(014605), 2022.es_CO
dc.relation.references[77] H. Sasaki, T. Kawano, and I. Stetcu. Noniterative finite amplitude methods for E1 and M1 giant resonances. Physical Review C, 105(044311), 2022.es_CO
dc.relation.references[78] E. V. Chimanski, E. J. In, J. E. Escher, S. Péru, and W. Younes. Towards a Predictive HFB+QRPA Framework for Deformed Nuclei: Selected Tools and Techniques. Journal of Physics: Conference Series, 2340(012033), 2022.es_CO
dc.relation.references[79] G. X. Dong, X. B. Wang, N. Michel, and M. P¿oszajczak. Gamow shell model description of the radiative capture reaction 8Li(n,¿)9Li. Physical Review C, 105(064608), 2022.es_CO
dc.relation.references[80] T. Tazawa. Nucleus-Nucleus potential in the Two-Center Shell Model. Progress of Theoretical Physics, 51(6):1764¿1782, 1974.es_CO
dc.relation.references[81] A. Diaz-Torres and M. Wiescher. Characterizing the astrophysical S factor for 12C + 12C fusion with wave-packet dynamics. Physical Review C, 97(055802), 2018.es_CO
dc.relation.references[82] T. Neff, H. Feldmeier, and K. Langanke. Towards microscopic ab initio calculations of astrophysical S-factors. Progress in Particle and Nuclear Physics, 66(2):341¿345, 2011.es_CO
dc.relation.references[83] Y. Taniguchi and M. Kimura. 12C + 12C fusion S¿-factor from a full-microscopic nuclear model. Physics Letters B, 823(136790), 2021.es_CO
dc.relation.references[84] T. Baba, Y. Taniguchi, and M. Kimura. 4¿ linear-chain state produced by 9Be+9Be collisions. Physical Review C, 105(L061301), 2022.es_CO
dc.relation.references[85] C. Beck. Clusters in nuclei, vol. 2. Lecture Notes in Physics. Springer Berlin, Heidelberg, 2012.es_CO
dc.relation.references[86] Shubhchintak and P. Descouvemont. Breakup effects in the 16C + p and 16C + d reactions. Physical Review C, 105(024605), 2022.es_CO
dc.relation.references[87] P. Descouvemont. Resonances in 12C and 24Mg: what do we learn from a microscopic cluster theory? The European Physical Journal A, 57(29), 2021.es_CO
dc.relation.references[88] K. Arai, S. Aoyama, Y. Suzuki, P. Descouvemont, and D. Baye. Tensor force manifestations in ab initio study of the 2H(d, ¿)4He, 2H(d, p)3H and 2H(d, n)3He reactions. Journal of Physics: Conference Series, 436(012024), 2013.es_CO
dc.relation.references[89] M. Dufour and P. Descouvemont. Multicluster study of the 12C + n and 12C + p systems. Physical Review C, 56(4):1831¿1839, 1997.es_CO
dc.relation.references[90] A. M. Lane and R. G. Thomas. R-matrix theory of nuclear reactions. Reviews of Modern Physics, 30(2):257¿353, 1958.es_CO
dc.relation.references[91] C. R. Brune. Alternative parametrization of R-matrix theory. Physical Review C, 66(044611), 2002.es_CO
dc.relation.references[92] R. Spartá, R. G. Pizzone, C. A. Bertulani, S. Hou, L. Lamia, and A. Tumino. Direct and Indirect Measurements for a Better Understanding of the Primordial Nucleosynthesis. Frontiers in Astronomy and Space Sciences, 7(560149), 2020.es_CO
dc.relation.references[93] D. F. Ramírez Jiménez and N. G. Kelkar. Different manifestations of S-matrix poles. Annals of Physics, 396:18¿43, 2018.es_CO
dc.relation.references[94] R. S. de Souza, C. Iliadis, and A. Coc. Astrophysical S-factors, Thermonuclear Rates, and Electron Screening Potential for the 3He(d,p)4He Big Bang Reaction via a Hierarchical Bayesian Model. The Astrophysical Journal, 872(1):75, 2019.es_CO
dc.relation.references[95] D. Odell, C. R. Brune, and D. R. Phillips. How bayesian methods can improve R-matrix analyses of data: The example of the dt reaction. Physical Review C, 105(014625), 2022.es_CO
dc.relation.references[96] J. Grineviciute, L. Lamia, A. M. Mukhamedzhanov, C. Spitaleri, and M. La Cognata. Low-energy R-matrix fits for the 6Li(d,¿)4He S factor. Physical Review C, 91(014601), 2015.es_CO
dc.relation.references[97] B. Vande Kolk, K. T. Macon, R. J. deBoer, T. Anderson, A. Boeltzig, K. Brandenburg, C. R. Brune, Y. Chen, A. M. Clark, T. Danley, and et al. Investigation of the 10B(p,¿)7Be reaction from 0.8 to 2.0 MeV. Physical Review C, 105(055802), 2022.es_CO
dc.relation.references[98] A. Sieverding, J. S. Randhawa, D. Zetterberg, R. J. deBoer, T. Ahn, R. Mancino, G. Martínez-Pinedo, and W. R. Hix. Role of low-lying resonances for the 10Be(p,¿)7Li reaction rate and implications for the formation of the Solar System. Physical Review C, 106(015803), 2022.es_CO
dc.relation.references[99] G. Kaur, V. Guimarães, J. C. Zamora, M. Assunção, J. Alcantara-Nuñez, A. L. de Lara, E. O. Zevallos, J. B. Ribeiro, R. Lichtenthäler, K. C. Pires, and et al. New resonances in 11C above the 10B+p threshold investigated by inverse kinematic resonant scattering. Physical Review C, 105(024609), 2022.es_CO
dc.relation.references[100] D. Schürmann, L. Gialanella, R. Kunz, and F. Strieder. The astrophysical S factor of 12C(¿,¿)16O at stellar energy. Physics Letters B, 711(1):35¿40, 2012.es_CO
dc.relation.references[101] J.-M. Sparenberg. Hybrid potential/R-matrix models for the 12C + ¿ system. Nuclear Physics A, 758:423¿426, 2005.es_CO
dc.relation.references[102] P. S. Prusachenko, T. L. Bobrovsky, I. P. Bondarenko, M. V. Bokhovko, A. F. Gurbich, and V. V. Ketlerov. Measurement of the cross section for the 13C(¿,n)16O reaction and determination of the cross section for the 16O(n,¿)13C reaction. Physical Review C, 105(024612), 2022.es_CO
dc.relation.references[103] N. Burtebaev, S. B. Igamov, R. J. Peterson, R. Yarmukhamedov, and D. M. Zazulin. New mea- surements of the astrophysical S factor for 12C(p,¿)13N reaction at low energies and the asymptotic normalization coefficient (nuclear vertex constant) for the p + 12C ¿ 13N reaction. Physical Review C, 78(035802), 2008.es_CO
dc.relation.references[104] S. Chakraborty, R. deBoer, A. Mukherjee, and S. Roy. Systematic R-matrix analysis of the 13C(p, ¿)14N capture reaction. Physical Review C, 91(045801), 2015.es_CO
dc.relation.references[105] G. Genard, P. Descouvemont, and G. Terwagne. S-factor measurement of the 13C(p,¿)14N reaction in reverse kinematics. Journal of Physics: Conference Series, 202(012015), 2010.es_CO
dc.relation.references[106] F. C. Barker. 15N(p,¿0)16O S factor. Physical Review C, 78(044612), 2008.es_CO
dc.relation.references[107] C. Angulo, A. E. Champagne, and H.-P. Trautvetter. R-matrix analysis of the 14N(p,¿)15O astrophysical S-factor. Nuclear Physics A, 758:391¿394, 2005.es_CO
dc.relation.references[108] A. Formicola, G. Imbriani, H. Costantini, C. Angulo, D. Bemmerer, R. Bonetti, C. Broggini, P. Corvisiero, J. Cruz, P. Descouvemont, and et al. Astrophysical S-factor of 14N(p,¿)15O. Physics Letters B, 591(1-2):61¿68, 2004.es_CO
dc.relation.references[109] F. Raiola, P. Migliardi, G. Gyürky, M. Aliotta, A. Formicola, R. Bonetti, C. Broggini, L. Campajola, P. Corvisiero, H. Costantini, and et al. Enhanced electron screening in d(d,p)t for deuterated Ta¿. The European Physical Journal A, 13(3):377¿382, 2002.es_CO
dc.relation.references[110] H. J. Assenbaum, K. Langanke, and C. Rolfs. Effects of electron screening on low-energy fusion cross sections. Zeitschrift für Physik A Atomic Nuclei, 327(4):461¿468, 1987.es_CO
dc.relation.references[111] F. Koyuncu and A. Soylu. Screening effects on 12 C + 12 C fusion reaction. Chinese Physics C, 42(054106), 2018.es_CO
dc.relation.references[112] D. G. Yakovlev, M. Beard, L. R. Gasques, and M. Wiescher. Simple analytic model for astrophysical S factors. Physical Review C, 82(044609), 2010.es_CO
dc.relation.references[113] S. B. Dubovichenko. Astrophysical S-factor for the radiative-capture reaction p13C ¿ 14N¿. Physics of Atomic Nuclei, 75(2):173¿181, 2012.es_CO
dc.relation.references[114] R. Bass. Nucleus-Nucleus Potential Deduced from Experimental Fusion Cross Sections. Physical Review Letters, 39(5):265¿268, 1977.es_CO
dc.relation.references[115] S. B. Dubovichenko and A. V. Dzhazairov-Kakhramanov. Astrophysical S -factor of p2H radiative capture. The European Physical Journal A, 39(2):139¿143, 2009.es_CO
dc.relation.references[116] M. Singh, Sukhvinder, and R. Kharab. Analysis of fusion excitation functions of various systems using modified Woods¿Saxon potential. Nuclear Physics A, 897:179¿197, 2013.es_CO
dc.relation.references[117] C. A. Bertulani. 7Be(p,¿)8B cross section from indirect breakup experiments. Zeitschrift für Physik A Hadrons and Nuclei, 356(1):293¿297, 1996.es_CO
dc.relation.references[118] A. Kabir and J.-U. Nabi. Re-examination of astrophysical S-factor of proton capture 9Be(p,¿)10B in stellar matter. Nuclear Physics A, 1007(122118), 2021.es_CO
dc.relation.references[119] P. Salamon, Á. Baran, and T. Vertse. Distributions of the S-matrix Poles in Woods¿Saxon and cut-off Woods¿Saxon potentials. Nuclear Physics A, 952:1¿17, 2016.es_CO
dc.relation.references[120] A. Kabir, B. F. Irgaziev, J.-U. Nabi, and S. Sagheer. Re-analysis of radiative capture 11C(p,¿)12N at low energy. Journal of Physics G: Nuclear and Particle Physics, 49(075101), 2022.es_CO
dc.relation.references[121] M. Singh, Sukhvinder, and R. Kharab. Analysis of fusion excitation function data by using an energy dependent potential model. Nuclear Physics A, 897:198¿217, 2013.es_CO
dc.relation.references[122] R. Ghasemi and H. Sadeghi. S-factor for radiative capture reactions for light nuclei at astrophysical energies. Results in Physics, 9:151¿165, 2018.es_CO
dc.relation.references[123] A. H. Amer and Y. E. Penionzhkevich. Elastic scattering analysis of isobar nuclei A = 6 projectiles on 12C using different models of optical potential. Nuclear Physics A, 1015(122300), 2021.es_CO
dc.relation.references[124] M. Assunção and P. Descouvemont. 12C + 12C and 16O + 16O fusion reactions at low energies. Journal of Physics: Conference Series, 590(012038), 2015.es_CO
dc.relation.references[125] G. P. A. Nobre, L. C. Chamon, L. R. Gasques, B. V. Carlson, and I. J. Thompson. Consistent analysis of fusion data without adjustable parameters for a wide variety of heavy-ion systems. Physical Review C, 75(044606), 2007.es_CO
dc.relation.references[126] J. G. Duarte, L. R. Gasques, J. R. B. Oliveira, V. A. B. Zagatto, L. C. Chamon, N. H. Medina, N. Added, W. A. Seale, J. A. Alcántara-Núñez, E. S. Rossi, Jr., and et al. Measurement of fusion cross sections for 16O + 16O. Journal of Physics G: Nuclear and Particle Physics, 42(065102), 2015.es_CO
dc.relation.references[127] D. L. Hill and J. A. Wheeler. Nuclear Constitution and the Interpretation of Fission Phenomena. Physical Review, 89(5):1102¿1145, 1953.es_CO
dc.relation.references[128] H. Esbensen. Structures in high-energy fusion data. Physical Review C, 85(064611), 2012.es_CO
dc.relation.references[129] M. Goldhaber and J. Weneser. Electromagnetic Transitions in Nuclei. Annual Review of Nuclear Science, 5(1):1¿24, 1955.es_CO
dc.relation.references[130] J. T. Huang, C. A. Bertulani, and V. Guimarães. Radiative capture of nucleons at astrophysical energies with single-particle states. Atomic Data and Nuclear Data Tables, 96(6):824¿847, 2010.es_CO
dc.relation.references[131] E. M. Tursunov, S. A. Turakulov, A. S. Kadyrov, and L. D. Blokhintsev. Astrophysical S factor and rate of 7Be(p, ¿)8B direct capture reaction in a potential model. Physical Review C, 104(045806), 2021.es_CO
dc.relation.references[132] L. Guimin, F. Deji, and C. Xiaowu. Sub-Barrier Fusion Coupled-Channels Calculations for 16O + 16,18O. Chinese Physics Letters, 9(11):577¿580, 1992.es_CO
dc.relation.references[133] M. Assunção and P. Descouvemont. 12C + 12C fusion in a multichannel folding model. Journal of Physics: Conference Series, 665(012010), 2016.es_CO
dc.relation.references[134] M. A. Hassanain and S. M. M. Al Sebiey. Analysis of 16O + 16O elastic and inelastic scattering using the optical model and the coupled-channels mechanism. Physical Review C, 90(054606), 2014.es_CO
dc.relation.references[135] K. Czerski, A. Huke, P. Heide, and G. Ruprecht. Experimental and theoretical screening energies for the 2H(d,p)3H reaction in metallic environments. The European Physical Journal A, 27(S1):83¿88, 2006.es_CO
dc.relation.references[136] F. Perey and B. Buck. A non-local potential model for the scattering of neutrons by nuclei. Nuclear Physics, 32:353¿380, 1962.es_CO
dc.relation.references[137] B. Golf, J. Hellmers, and F. Weber. Impact of strange quark matter nuggets on pycnonuclear reaction rates in the crusts of neutron stars. Physical Review C, 80(015804), 2009.es_CO
dc.relation.references[138] D. Bai and Z. Ren. Woods-Saxon-Gaussian potential and alpha-cluster structures of alpha + closed shell nuclei. Chinese Physics C, 42(124102), 2018.es_CO
dc.relation.references[139] L. C. Chamon. The São Paulo potential. Nuclear Physics A, 787(1-4):198¿205, 2007.es_CO
dc.relation.references[140] D. F. Rojas-Gamboa, J. E. Velasquez, N. G. Kelkar, and N. J. Upadhyay. Manifestation of deformation and nonlocality in ¿ and cluster decay. Physical Review C, 105(034311), 2022.es_CO
dc.relation.references[141] N. J. Upadhyay, A. Bhagwat, and B. K. Jain. A new treatment of nonlocality in scattering process. Journal of Physics G: Nuclear and Particle Physics, 45(015106), 2017.es_CO
dc.relation.references[142] J. E. Perez Velasquez, N. G. Kelkar, and N. J. Upadhyay. Assessment of nonlocal nuclear potentials in ¿ decay. Physical Review C, 99(024308), 2019.es_CO
dc.relation.references[143] W. H. Z. Cárdenas, L. F. Canto, R. Donangelo, M. S. Hussein, J. Lubian, and A. Romanelli. Ap- proximations in fusion and breakup reactions induced by radioactive beams. Nuclear Physics A, 703(3-4):633¿648, 2002.es_CO
dc.relation.references[144] B. K. Jennings, S. Karataglidis, and T. D. Shoppa. Direct capture astrophysical S factors at low energy. Physical Review C, 58(1):579¿581, 1998.es_CO
dc.relation.references[145] M. Beard, A. V. Afanasjev, L. C. Chamon, L. R. Gasques, M. Wiescher, and D. G. Yakovlev. Astro- physical S factors for fusion reactions involving C, O, Ne, and Mg isotopes. Atomic Data and Nuclear Data Tables, 96(5):541¿566, 2010.es_CO
dc.relation.references[146] D. G. Kovar, D. F. Geesaman, T. H. Braid, Y. Eisen, W. Henning, T. R. Ophel, M. Paul, K. E. Rehm, S. J. Sanders, P. Sperr, and et al. Systematics of carbon- and oxygen-induced fusion on nuclei with 12 ¿ A ¿ 19. Physical Review C, 20(4):1305¿1331, 1979.es_CO
dc.relation.references[147] G. Van Rossum and F. L. Drake. Python 3: Reference Manual. CreateSpace, 2009.es_CO
dc.relation.references[148] W. McKinney. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, page 56¿61, 2010.es_CO
dc.relation.references[149] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, and et al. Array programming with NumPy. Nature, 585:357¿362, 2020.es_CO
dc.relation.references[150] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, and et al. Scipy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17:261¿272, 2020.es_CO
dc.relation.references[151] J. D. Hunter. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3):90¿95, 2007.es_CO
dc.relation.references[152] A. M. Mukhamedzhanov, D. Y. Pang, and A. S. Kadyrov. Astrophysical factors of 12C + 12C fusion extracted using the Trojan horse method. Physical Review C, 99(064618), 2019.es_CO
dc.relation.references[153] P. Descouvemont, A. Adahchour, C. Angulo, A. Coc, and E. Vangioni-Flam. Compilation and R-matrix analysis of Big Bang nuclear reaction rates. Atomic Data and Nuclear Data Tables, 88(1):203¿236, 2004.es_CO
dc.relation.references[154] V. V. Zerkin, B. Pritychenko, J. Totans, L. Vrapcenjak, A. Rodionov, and G. I. Shulyak. EXFOR- NSR PDF database: a system for nuclear knowledge preservation and data curation. Journal of Instrumentation, 17(P03012), 2022.es_CO
dc.relation.references[155] V. M. Bystritsky, V. V. Gerasimov, A. R. Krylov, S. S. Parzhitskii, G. N. Dudkin, V. L. Kaminskii, B. A. Nechaev, V. N. Padalko, A. V. Petrov, G. A. Mesyats, and et al. Study of the pd reaction in the astrophysical energy region using the Hall accelerator. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 595(3):543¿548, 2008.es_CO
dc.relation.references[156] G. J. Schmid, R. M. Chasteler, C. M. Laymon, H. R. Weller, R. M. Prior, and D. R. Tilley. Po- larized proton capture by deuterium and the 2H(p,¿)3He astrophysical S factor. Physical Review C, 52(4):R1732¿R1735, 1995.es_CO
dc.relation.references[157] B. L. Berman, L. J. Koester, Jr., and J. H. Smith. Photodisintegration of He3. Physical Review, 133:B117¿B129, 1964.es_CO
dc.relation.references[158] J. B. Warren, K. L. Erdman, L. P. Robertson, D. A. Axen, and J. R. Macdonald. Photodisintegration of He3 near the Threshold. Physical Review, 132(4):1691¿1692, 1963es_CO
dc.relation.references[159] U. Greife, F. Gorris, M. Junker, C. Rolfs, and D. Zahnow. Oppenheimer-Phillips effect and electron screening in d + d fusion reactions. Zeitschrift für Physik A Hadrons and Nuclei, 351(1):107¿112, 1995.es_CO
dc.relation.references[160] A. Krauss, H. W. Becker, H. P. Trautvetter, C. Rolfs, and K. Brand. Low-energy fusion cross sections of D + D and D + 3He reactions. Nuclear Physics A, 465(1):150¿172, 1987.es_CO
dc.relation.references[161] D. S. Leonard, H. J. Karwowski, C. R. Brune, B. M. Fisher, and E. J. Ludwig. Precision measurements of 2 H(d, p)3 H and 2 H(d, n)3 He total cross sections at Big Bang nucleosynthesis energies. Physical Review C, 73(045801), 2006.es_CO
dc.relation.references[162] R. L. Schulte, M. Cosack, A. W. Obst, and J. L. Weil. 2H + reactions from 1.96 to 6.20 MeV. Nuclear Physics A, 192(3):609¿624, 1972.es_CO
dc.relation.references[163] A. Tumino, C. Spitaleri, A. M. Mukhamedzhanov, S. Typel, M. Aliotta, V. Burjan, M. Gimenez del Santo, G. G. Kiss, V. Kroha, Z. Hons, and et al. Low-energy d + d fusion reactions via the Trojan Horse method. Physics Letters B, 700(2):111¿115, 2011.es_CO
dc.relation.references[164] LUNA Collaboration, C. Casella, H. Costantini, A. Lemut, B. Limata, R. Bonetti, C. Broggini, L. Cam- pajola, P. Corvisiero, J. Cruz, A. D¿Onofrio, and et al. First measurement of the d(p, ¿)3He cross section down to the solar Gamow peak. Nuclear Physics A, 706(1-2):203¿216, 2002.es_CO
dc.relation.references[165] V. N. Fetisov, A. N. Gorbunov, and A. T. Varfolomeev. Nuclear photoeffect on three-particle nuclei. Nuclear Physics, 71(2):305¿342, 1965.es_CO
dc.relation.references[166] K. N. Geller, E. G. Muirhead, and L. D. Cohen. The 2H(p,¿)3He reaction at the breakup threshold. Nuclear Physics A, 96(2):397¿400, 1967.es_CO
dc.relation.references[167] G. M. Griffiths, E. A. Larson, and L. P. Robertson. The capture of protons by deuterons. Canadian Journal of Physics, 40(4):402¿411, 1962.es_CO
dc.relation.references[168] L. Ma, H. J. Karwowski, C. R. Brune, Z. Ayer, T. C. Black, J. C. Blackmon, E. J. Ludwig, M. Viviani, A. Kievsky, and R. Schiavilla. Measurements of 1H(d¿,¿)3He and 2H(p¿,¿)3He at very low energies. Physical Review C, 55(2):588¿596, 1997.es_CO
dc.relation.references[169] G. J. Schmid, M. Viviani, B. J. Rice, R. M. Chasteler, M. A. Godwin, G. C. Kiang, L. L. Kiang, A. Kievsky, C. M. Laymon, R. M. Prior, and et al. Effects of Non-nucleonic Degrees of freedom in the D(p¿,¿)3He and p(d¿,¿)3He Reactions. Physical Review Letters, 76(17):3088¿3091, 1996.es_CO
dc.relation.references[170] W. Wölfli, R. Bösch, J. Lang, R. Müller, and P. Marmier. Einfang von Protonen durch Deuteronen. Helvetica Physica Acta, 40(7):946¿972, 1967.es_CO
dc.relation.references[171] L. T. Baby, C. Bordeanu, G. Goldring, M. Hass, L. Weissman, V. N. Fedoseyev, U. Köster, Y. Nir-El, G. Haquin, H. W. Gäggeler, R. Weinreich, and et al. New measurement of the proton capture rate on 7Be and the S17(0) factor. Physical Review C, 67(065805), 2003.es_CO
dc.relation.references[172] A. R. Junghans, E. C. Mohrmann, K. A. Snover, T. D. Steiger, E. G. Adelberger, J. M. Casandjian, H. E. Swanson, L. Buchmann, S. H. Park, A. Zyuzin, and A. M. Laird. Precise measurement of the 7Be(p,¿)8B S factor. Physical Review C, 68(065803), 2003.es_CO
dc.relation.references[173] A. R. Junghans, K. A. Snover, E. C. Mohrmann, E. G. Adelberger, and L. Buchmann. Updated S factors for the 7Be(p,¿)8B reaction. Physical Review C, 81(012801(R)), 2010.es_CO
dc.relation.references[174] F. Schümann, S. Typel, F. Hammache, K. Sümmerer, F. Uhlig, I. Böttcher, D. Cortina, A. Förster, M. Gai, H. Geissel, and et al. Low-energy cross section of the 7Be(p,¿)8B solar fusion reaction from the Coulomb dissociation of 8B. Physical Review C, 73(015806), 2006.es_CO
dc.relation.references[175] J. D. King, R. E. Azuma, J. B. Vise, J. Görres, C. Rolfs, H. P. Trautvetter, and A. E. Vlieks. Cross section and astrophysical S-factor for the 13C(p,¿)14N reaction. Nuclear Physics A, 567(2):354¿376, 1994.es_CO
dc.relation.references[176] E. J. Woodbury and W. A. Fowler. The Cross Section for the Radiative Capture of Protons by C13 at 129 kev. Physical Review, 85(1):51¿57, 1952.es_CO
dc.relation.references[177] H. W. Becker, K. U. Kettner, C. Rolfs, and H. P. Trautvetter. The 12C + 12C reaction at subcoulomb energies (II). Zeitschrift für Physik A Atoms and Nuclei, 303(4):305¿312, 1981.es_CO
dc.relation.references[178] G. Fruet, S. Courtin, M. Heine, D. G. Jenkins, P. Adsley, A. Brown, R. Canavan, W. N. Catford, E. Charon, D. Curien, and et al. Advances in the Direct Study of Carbon Burning in Massive Stars. Physical Review Letters, 124(192701), 2020es_CO
dc.relation.references[179] T. Spillane, F. Raiola, C. Rolfs, D. Schürmann, F. Strieder, S. Zeng, H.-W. Becker, C. Bordeanu, L. Gialanella, M. Romano, and et al. 12C + 12C Fusion Reactions near the Gamow Energy. Physical Review Letters, 98(122501), 2007.es_CO
dc.relation.references[180] W. P. Tan, A. Boeltzig, C. Dulal, R. J. deBoer, B. Frentz, S. Henderson, K. B. Howard, R. Kelmar, J. J. Kolata, J. Long, and et al. New Measurement of 12C + 12C Fusion Reaction at Astrophysical Energies. Physical Review Letters, 124(192702), 2020.es_CO
dc.relation.references[181] H. Spinka and H. Winkler. Experimental determination of the total reaction cross section of the stellar nuclear reaction 16O + 16O. Nuclear Physics A, 233(2):456¿494, 1974.es_CO
dc.relation.references[182] D. Gaspard. Connection formulas between Coulomb wave functions. Journal of Mathematical Physics, 59(112104), 2018.es_CO
dc.relation.references[183] J. J. Moré. The Levenberg-Marquardt algorithm: Implementation and theory. In G. A. Watson, editor, Numerical Analysis, volume 630 of Lecture Notes in Mathematics, page 105¿116. Springer-Verlag, 1978.es_CO
dc.relation.references[184] D. Ramadasan, M. Chevaldonné, and T. Chateau. LMA: A generic and efficient implementation of the Levenberg-Marquardt Algorithm. Software: Practice and Experience, 47(11):1707¿1727, 2017.es_CO
dc.relation.references[185] M. A. Branch, T. F. Coleman, and Y. Li. A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems. SIAM Journal on Scientific Computing, 21(1):1¿23, 1999.es_CO
dc.relation.references[186] T. F. Coleman and Y. Li. On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds. Mathematical Programming, 67(1-3):189¿224, 1994.es_CO
dc.rights.licenceAtribución 4.0 Internacional*

Ficheros en el ítem


Nombre: monograph-project.pdf

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem