Mostrar el registro sencillo del ítem

dc.contributor.advisorBrunetti, Andrés Eduardo
dc.contributor.advisorVives Flórez, Martha Josefina 
dc.contributor.authorPalacios Rodríguez, Pablo
dc.date.accessioned2023-01-31T22:10:22Z
dc.date.available2023-01-31T22:10:22Z
dc.date.issued2022-07-28
dc.identifier.urihttp://hdl.handle.net/1992/64426
dc.descriptionEs un documento que aún se encuentra en proceso de publicación varios de sus capítulos.
dc.description.abstractThe study of biological models exhibiting dual cryptic-aposematic anti- predatory strategies based on their coloration, can shed important light on some of the great controversies in the evolution of aposematism. Among them, the greatest vulnerability faced by the first conspicuous individuals within a population; the link between conspicuous coloration and other traits indicative of condition, physiological performance and development of toxicity; and the consequences of aposematic coloration in contexts of courtship, sexual selection and reproductive isolation. In this context, this thesis investigates the functional and evolutionary origin, and the ecological correlation of the femoral and inguinal colorful spots in frog lineages of the superfamily Dendrobatoidae historically considered as cryptic.
dc.description.sponsorshipNational Ph.D. Scholarship Fund 785 of 2017es_CO
dc.format.extent85 páginases_CO
dc.format.mimetypeapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherUniversidad de los Andeses_CO
dc.titleOrigin, development, and function of colored inguinal and axillary spots in cryptic lineages of poison frogs (Amphibia: Anura: Dendrobatoidea)
dc.typeTrabajo de grado - Doctoradoes_CO
dc.publisher.programDoctorado en Ciencias - Biologíaes_CO
dc.subject.keywordSexual dichromatism
dc.subject.keywordParental care
dc.subject.keywordTadpole transport
dc.subject.keywordDendrobatoidea
dc.subject.keywordColostethus imbricolus
dc.publisher.facultyFacultad de Cienciases_CO
dc.publisher.departmentDepartamento de Ciencias Biológicases_CO
dc.contributor.juryRojas, Bibiana
dc.contributor.juryMolina Escobar, Jorge Alberto
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.description.degreenameDoctor en Ciencias - Biologíaes_CO
dc.description.degreelevelDoctoradoes_CO
dc.contributor.researchgroupGrupo de Ecofisiologia, Comportamiento y Herpetologíaes_CO
dc.description.researchareaComportamiento animales_CO
dc.identifier.instnameinstname:Universidad de los Andeses_CO
dc.identifier.reponamereponame:Repositorio Institucional Sénecaes_CO
dc.identifier.repourlrepourl:https://repositorio.uniandes.edu.co/es_CO
dc.relation.referencesAmézquita A, Ramos, Oscar, González MC, Rodríguez Camilo, Medina I, Simões PI, Lima AP. (2017). Conspicuousness, color resemblance, and toxicity in geographically diverging mimicry: The pan-Amazonian frog Allobates femoralis. Evolution, 71, 1039-1050.es_CO
dc.relation.referencesAgarwal A, Garg S, Rakesh PK, Singh I, Mishra BK. (2010). Tensile behavior of glass fiber reinforced plastics subjected to different environmental conditions. Indian Journal of Engineering & Material Sciences,17, 471-476.es_CO
dc.relation.referencesBarnett JB, Michalis C, Scott-Samuel NE, Cuthill IC. (2018). Distance-dependent defensive coloration in the poison frog Dendrobates tinctorius, Dendrobatidae. Proceedings of the National Academy of Sciences, 115, 6416-6421.es_CO
dc.relation.referencesBehrens RR. (1999). The role of artists in ship camouflage during World War I. Leonardo, 32, 53- 59.es_CO
dc.relation.referencesCaldwell JP. (1996). The evolution of myrmecophagy and its correlates in poison frogs (Family Dendrobatidae). Journal of Zoology, 240, 75-101es_CO
dc.relation.referencesCaro T, Sherratt TN, Stevens M. (2016). The ecology of multiple colour defences. Evolutionary Ecology, 30, 797-809.es_CO
dc.relation.referencesCaro T, Stoddard MC, Stuart-Fox D. (2017). Animal coloration research: why it matters. Philosophical Transactions of the Royal Society B, 372, 20160333.es_CO
dc.relation.referencesCott HB. (1940). Adaptive Colouration in Animals. Methuen, London.es_CO
dc.relation.referencesCrump ML. (2015). Anuran reproductive modes: evolving perspectives. Journal of Herpetology, 49, 1-16.es_CO
dc.relation.referencesCuthill IC, Stevens M, Sheppard J, Maddocks T, Párraga CA, Troscianko TS. (2005). Disruptive coloration and background pattern matching. Nature, 434, 72.es_CO
dc.relation.referencesDaly JW, Secunda SI, Garraffo HM, Spande TF, Wisnieski A, Cover JF Jr. (1994). An uptake system for dietary alkaloids in poison frogs (Dendrobatidae). Toxicon, 32, 657-663.es_CO
dc.relation.referencesDarst CR, Menéndez-Guerrero PA, Coloma LA, Cannatella DC. (2005). Evolution of dietary specialization and chemical defense in poison frogs (Dendrobatidae): a comparative analysis. American Naturalist, 165, 56-69.es_CO
dc.relation.referencesDuarte RC, Flores AA, Stevens M. (2017). Camouflage through colour change: mechanisms, adaptive value and ecological significance. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160342.es_CO
dc.relation.referencesEndler JA. (1978). A predator's view of animal colour patterns. Evolutionary Biology, 11, 319- 364.es_CO
dc.relation.referencesEndler JA, Mappes J. (2017). The current and future state of animal coloration research. Philosophical Transactions of the Royal Society B, 372, 20160352.es_CO
dc.relation.referencesFraser S, Callahan A, Klassen D, Sherratt TN. (2007). Empirical tests of the role of disruptive coloration in reducing detectability. Proceedings of the Royal Society B, 274, 1325-1331.es_CO
dc.relation.referencesFrost Darrel R. (2019). Amphibian Species of the World: an Online Reference. Electronic Database accessible at http://research.amnh.org/herpetology/amphibia/index.html. American Museum of Natural History, New York, USA.es_CO
dc.relation.referencesGordon SP, Kokko H, Rojas B, Nokelainen O, Mappes J. (2015). Colour polymorphism torn apart by opposing positive frequency-dependent selection, yet maintained in space. Journal of Animal Ecology, 84, 1555-1564.es_CO
dc.relation.referencesGrant T, Frost DR, Caldwell JP, Gagliardo R. Haddad CFB, Kok PJR, Means BD, Noonan BP, Schargel W. Wheeler WC. (2006) Phylogenetic systematics of dart poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bulletin of the American Museum of Natural History, 299, 1-262.es_CO
dc.relation.referencesGrant T, Rada M, Anganoy-Criollo M, Batista A, Dias PH, Jeckel M, Machado DJ. Rueda- Almonacid JV. (2017). Phylogenetic systematics of dart-poison frogs and their relatives revisited (Anura: Dendrobatoidea). South American Journal of Herpetology, 12, S1-S90.es_CO
dc.relation.referencesHigginson AD, Delf J, Ruxton GD, Speed MP. (2011). Growth and reproductive costs of larval defence in the aposematic lepidopteran Pieris brassicae. Journal of Animal Ecology, 80, 384- 392.es_CO
dc.relation.referencesHödl W, Amézquita A. (2001). Visual signaling in anuran amphibians. Anuran communication, 121-141.es_CO
dc.relation.referencesHonma A, Mappes J, Valkonen JK. (2015). Warning coloration can be disruptive: aposematic marginal wing patterning in the wood tiger moth. Ecology and Evolution, 5, 4863-4874.es_CO
dc.relation.referencesHughes A, Liggins E, Stevens M. (2019). Imperfect camouflage: how to hide in a variable world?. Proceedings of the Royal Society B, 286, 20190646.es_CO
dc.relation.referencesLeary CJ, Harris S. (2013). Steroid hormone levels in calling males and males practicing alternative non-calling mating tactics in the green treefrog, Hyla cinerea. Hormones and Behavior, 63, 20-24.es_CO
dc.relation.referencesMaan ME, Cummings ME. (2008). Female preferences for aposematic signal components in a polymorphic poison frog. Evolution, 62, 2334-2345.es_CO
dc.relation.referencesMaan ME, Cummings ME. (2011). Poison frog colors are honest signals of toxicity, particularly for bird predators. The American Naturalist, 179, 1-14.es_CO
dc.relation.referencesMarler CA, Ryan MJ. (1996). Energetic constraints and steroid hormone correlates of male calling behaviour in the túngara frog. Journal of Zoology, 240, 397-409.es_CO
dc.relation.referencesMarples NM, Kelly DJ, Thomas RJ. (2005). Perspective: the evolution of warning coloration is not paradoxical. Evolution, 59, 933-940.es_CO
dc.relation.referencesMappes J, Marples NM, Endler JA. (2005). The complex business of survival by aposematism. Trends in Ecology and Evolution, 20, 598-603.es_CO
dc.relation.referencesMcMahon K, Marples N. (2017). Reduced dietary conservatism in a wild bird in the presence of intraspecific competition. Journal of Avian Biology, 48, 448-454.es_CO
dc.relation.referencesMerilaita S. (1998). Crypsis through disruptive coloration in an isopod. Proceedings of the Royal Society of London B, 26, 1059-1064.es_CO
dc.relation.referencesMoore MC, Crews D. (1986). Sex steroid hormones in natural populations of a sexual whiptail lizard Cnemidophorus inornatus, a direct evolutionary ancestor of a unisexual parthenogen. General and Comparative Endocrinology, 63,424-430.es_CO
dc.relation.referencesNokelainen O, Hegna RH, Reudler JH, Lindstedt C, Mappes J. (2012). Trade-off between warning signal efficacy and mating success in the wood tiger moth. Proceedings of the Royal Society B, 279, 257-265.es_CO
dc.relation.referencesNokelainen O, Valkonen J, Lindstedt C, Mappes J. (2014). Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths. Journal of Animal Ecology, 83, 598-605.es_CO
dc.relation.referencesOjala, K, Julkunen-Tiitto, R, Lindström, L, Mappes, J. (2005). Diet affects the immune defence and life-history traits of an Arctiid moth Parasemia plantaginis. Evolutionary Ecology Research, 7, 1153-1170.es_CO
dc.relation.referencesPoulton EB. (1890). The colours of animals: Their meaning and use. Kegan Paul, Trench, Trubner, London.es_CO
dc.relation.referencesRodríguez A, Poth D, Schulz S, Vences M. (2011). Discovery of skin alkaloids in a miniaturized eleutherodactylid frog from Cuba. Biology Letters, 7, 414-418.es_CO
dc.relation.referencesRodríguez A, Poth D, Schulz S, Gehara M, Vences M. (2013). Genetic diversity, phylogeny and evolution of alkaloid sequestering in Cuban miniaturized frogs of the Eleutherodactylus limbatus group. Molecular Phylogenetics and Evolution, 68, 541-554.es_CO
dc.relation.referencesRoper TJ. (1994). Conspicuousness of prey retards reversal of learned avoidance. Oikos, 69, 115-118.es_CO
dc.relation.referencesRojas B, Valkonen J, Nokelainen O. (2015). Aposematism. Current Biology, 25, 350-351.es_CO
dc.relation.referencesRojas B. (2017). Behavioural, ecological, and evolutionary aspects of diversity in frog colour patterns. Biological Reviews, 92, 1059-1080.es_CO
dc.relation.referencesRowe C, Guilford T. (1999). The evolution of multimodal warning displays. Evolutionary Ecology, 13, 655-671.es_CO
dc.relation.referencesRuxton GD. (2002). The possible fitness benefits of striped coat coloration for zebra. Mammal Review, 32, 237-244.es_CO
dc.relation.referencesRuxton GD, Sherratt, T.N, Speed, M.P. (2004). Avoiding attack: The Evolutionary ecology of crypsis, warning signals, and mimicry. Oxford University Press, Oxford.es_CO
dc.relation.referencesRuxton GD, Sherratt TN. (2006). Aggregation, defence and warning signals: the evolutionary relationship. Proceedings of the Royal Society B, 273, 2417-2424.es_CO
dc.relation.referencesRyan MJ. (2001). Anuran communication. Smithsonian Institution, Washington, DC.es_CO
dc.relation.referencesSantos JC, Coloma LA, Summers K, Caldwell JP, Ree R, Cannatella DC. (2009). Amazonian amphibian diversity is primarily derived from late Miocene Andean lineages. PLoS Biology, 7, 1000056.es_CO
dc.relation.referencesSavitzky AH, Mori A, Hutchinson DA, Saporito RA, Burghardt GM, Lillywhite HB, Meinwald J. (2012). Sequestered defensive toxins in tetrapod vertebrates: principles, patterns and prospects for future studies. Chemoecology, 22, 141-158.es_CO
dc.relation.referencesSilverstone PA. (1975). Two new species of Colostethus (Amphibia: Anura: Dendrobatidae) from Colombia. Natural History Museum of Los Angeles County, 268, 1-10.es_CO
dc.relation.referencesSinervo B. (2000). Adaptation, natural selection and optimal life-history allocation in the face of genetically based trade-offs. 41-64. In Mousseau TA, Sinervo B, and Endler J, editors. Adaptive genetic variation in the wild. Oxford University Press, Oxford, UK.es_CO
dc.relation.referencesSpeed MP, Ruxton GD. (2005). Aposematism: what should our starting point be?. Proceedings of the Royal Society B, 272, 431-438.es_CO
dc.relation.referencesStevens M, Cuthill, IC. (2006). Disruptive coloration, crypsis and edge detection in early visual processing. Proceedings of the Royal Society B, 273, 2141-2147.es_CO
dc.relation.referencesStevens M, Cuthill IC, Windsor AM, Walker H J. (2006). Disruptive contrast in animal camouflage. Proceedings of the Royal Society B, 273, 2433-2438.es_CO
dc.relation.referencesStevens M, Merilaita S. (2009). Animal camouflage: current issues and new perspectives. Philosophical Transactions of the Royal Society B, 364, 423-427.es_CO
dc.relation.referencesStevens M, Ruxton GD. (2011). Linking the evolution and form of warning coloration in nature. Proceedings Transactions of the Royal Society B, 279, 417-426.es_CO
dc.relation.referencesStevens M. (2016). Color change, phenotypic plasticity, and camouflage. Frontiers in Ecology and Evolution, 4, 51.es_CO
dc.relation.referencesStevens M, Ruxton GD. (2019). The key role of behaviour in animal camouflage. Biological Reviews, 94, 116-134.es_CO
dc.relation.referencesSummers K, Clough ME. (2001). The evolution of coloration and toxicity in the poison frog familiy (Dendrobatidae) Proccedings of the Natural Academy of Science, 98, 6227-6232.es_CO
dc.relation.referencesThayer GH. (1909). Concealing coloration in the animal kingdom. An exposition of the laws of disguise through color and pattern; being a summary of Abbott H. Thayer's discoveries. Macmillan, New York.es_CO
dc.relation.referencesThomas RJ, Marples NM, Cuthill IC, Takahashi M, Gibson EA. (2003). Dietary conservatism may facilitate the initial evolution of aposematism. Oikos, 101, 458-466.es_CO
dc.relation.referencesThomas RJ, Bartlett LA, Marples NM, Kelly DJ, Cuthill IC. (2004). Prey selection by wild birds can allow novel and conspicuous colour morphs to spread in prey populations. Oikos, 106, 285-294.es_CO
dc.relation.referencesTullberg BS, Gamberale-Stille G, Solbreck C. (2000). Effects of food plant and group size on predator defence: differences between two co-occurring aposematic Lygaeinae bugs. Ecological Entomology, 25, 220-225.es_CO
dc.relation.referencesTullberg BS, Merilaita S, Wiklund C. (2005). Aposematism and crypsis combined as a result of distance dependence: functional versatility of the colour pattern in the swallowtail butterfly larva. Proceedings of the Royal Society of London B, 272, 1315-1321.es_CO
dc.relation.referencesWallace AR. (1867). Mimicry and other protective resemblances among animals. Westminster Foreign, 32, 1-43.es_CO
dc.relation.referencesWallace AR. (1877). The colours of animals and plants. American Naturalist, 11, 641-662.es_CO
dc.relation.referencesWells KD. (2007). The Ecology and behavior of amphibians. The University of Chicago Press, Chicago. USAes_CO
dc.relation.referencesZylinski S, Osorio D. (2013). Visual contrast and color in rapid learning of novel patterns by chicks. Journal of Experimental Biology, 216, 4184-4189.es_CO
dc.relation.referencesAcosta-Galvis AR, Vargas-Ramírez M. (2018). A new species of Hyloxalus Jiménez De La Espada, 1871 "1870" (Anura: Dendrobatidae: Hyloxalinae) from a cloud forest near Bogotá, Colombia, with comments on the subpunctatus clade. Vertebrate Zoology, 68, 123-141.es_CO
dc.relation.referencesAllen CE, Zwaan BJ, Brakefield PM. (2011). Evolution of sexual dimorphism in the Lepidoptera. Annual Review of Entomology, 56, 445-464.es_CO
dc.relation.referencesAmundsen T, Forsgren E. (2001). Male mate choice selects for female coloration in a fish. Proceedings of the National Academy of Sciences, 98, 13155-13160.es_CO
dc.relation.referencesAndersson MB. (1994) Sexual selection: Princeton Univ Press.es_CO
dc.relation.referencesAngelier F, Wingfield JC, Tartu S, Chastel O. (2016). Does prolactin mediate parental and life- history decisions in response to environmental conditions in birds? A review. Hormones and Behavior, 77, 18-29.es_CO
dc.relation.referencesAspengren S, Sköld HN, Wallin M. (2009). Different strategies for color change. Cellular and Molecular Life Sciences, 66, 187-191.es_CO
dc.relation.referencesBagnara JT, Taylor JD, Hadley ME. (1968). The dermal chromatophore unit. Journal of Cell Biology, 38, 67-79.es_CO
dc.relation.referencesBell RC, Webster GN, Whiting MJ. (2017). Breeding biology and the evolution of dynamic sexual dichromatism in frogs. Journal Evolutionary Biology, 30, 2104-2115.es_CO
dc.relation.referencesBell RC, Zamudio KR. (2012). Sexual dichromatism in frogs: natural selection, sexual selection and unexpected diversity. Proceedings of the Royal Society B, 279, 4687-4693.es_CO
dc.relation.referencesBrown JL, Twomey E, Amezquita A, et al. (2011). A taxonomic revision of the Neotropical poison frog genus Ranitomeya (Amphibia: Dendrobatidae). Zootaxa, 3083, 1-120.es_CO
dc.relation.referencesBrown PS. (1976). The effect of prolactin on color and skin pteridines in the frog, Rana pipiens. General and Comparative Endocrinology, 28, 426-433.es_CO
dc.relation.referencesBush SL, Bell DJ. (1997). Courtship and female competition in the Majorcan midwife toad, Alytes muletensis. Ethology, 103, 292-303.es_CO
dc.relation.referencesCaldwell JP. (2005). Amphibian faunas of two eastern Amazonian rainforest sites in Pará, Brazil. Sam Noble Oklahoma Museum of Natural History.es_CO
dc.relation.referencesCamargo CR, Visconti MA, Castrucci AML. (1999). Physiological color change in the bullfrog, Rana catesbeiana. Journal Experimental Zoology, 283, 160-169.es_CO
dc.relation.referencesCaro T, Stankowich T, Kiffner C, Hunter J. (2013). Are spotted skunks conspicuous or cryptic? Ethology Ecology & Evolution, 25, 144-160.es_CO
dc.relation.referencesCarvajal-Castro JD, Vargas-Salinas F, Casas-Cardona S, et al. (2021). Aposematism facilitates the diversification of parental care strategies in poison frogs. Scientific Reports, 11, 1-15.es_CO
dc.relation.referencesCossio R. (2008). Oophaga pumilio (Strawberry Poison Frog) Parental Care. Herpetolical Review, 39, 462.es_CO
dc.relation.referencesCrump ML. (1996). Parental care among the amphibia. In: Advances in the Study of Behavior. Elsevier, 25, 109-144.es_CO
dc.relation.referencesDaly JW, Gusovsky F, Myers CW, et al. (1994). First occurrence of tetrodotoxin in a dendrobatid frog (Colostethus inguinalis), with further reports for the bufonid genus Atelopus. Toxicon, 32, 279-285.es_CO
dc.relation.referencesDownie JR, Robinson E, Linklater-McLennan RJ. (2005). Are there costs to extended larval transport in the Trinidadian stream frog, Mannophryne trinitatis (Dendrobatidae)? Journal of Natural History, 39, 2023-2034.es_CO
dc.relation.referencesDuellman WE, Trueb L. (1986). Biology of Amphibians New York McGraw-Hill.es_CO
dc.relation.referencesDugas MB, Richards-Zawacki CL. (2015). A captive breeding experiment reveals no evidence of reproductive isolation among lineages of a polytypic poison frog. Biological Journal of the Linnean Society, 116, 52-62.es_CO
dc.relation.referencesDunn PO, Armenta JK, Whittingham LA. (2015). Natural and sexual selection act on different axes of variation in avian plumage color. Science Advances, 1, e1400155.es_CO
dc.relation.referencesEndler JA. (1990). On the measurement and classification of colour in studies of animal colour patterns. Biological Journal of the Linnean Society, 41, 315-352.es_CO
dc.relation.referencesEngelbrecht-Wiggans E, Tumulty JP. (2019). "Reverse" sexual dichromatism in a Neotropical frog. Ethology, 125, 957-964.es_CO
dc.relation.referencesGaleano SP, Harms KE. (2016). Coloration in the polymorphic frog Oophaga pumilio associates with level of aggressiveness in intraspecific and interspecific behavioral interactions. Behavioral Ecology and Sociobiology, 70, 83-97.es_CO
dc.relation.referencesGrant T. (2004). On the identities of Colostethus inguinalis (Cope, 1868) and C. panamensis (Dunn, 1933), with comments on C. latinasus (Cope, 1863) (Anura: Dendrobatidae). American Museum Novitates, 2004, 1--24.es_CO
dc.relation.referencesGrant T. (2007). A new, toxic species of Colostethus (Anura: Dendrobatidae: Colostethinae) from the Cordillera Central of Colombia. Zootaxa, 1555, 39-51.es_CO
dc.relation.referencesGreener MS, Hutton E, Pollock CJ, et al. (2020). Sexual dichromatism in the neotropical genus Mannophryne (Anura: Aromobatidae). PLoS One 15, e0223080.es_CO
dc.relation.referencesKahn TR, La Marca E, Lötters S, Brown, JL, Twomey E, Amézquita A. (2016). Aposematic poison frogs (Dendrobatidae) of the Andean countries: Bolivia, Colombia, Ecuador, Peru.es_CO
dc.relation.referencesKillius AM, Dugas MB. (2014). Tadpole transport by male Oophaga pumilio (Anura: Dendrobatidae): an observation and brief review. Herpetology Notes, 7, 747-749.es_CO
dc.relation.referencesKindermann C, Narayan EJ, Hero JM. (2014). The neuro-hormonal control of rapid dynamic skin colour change in an amphibian during amplexus. PLoS One, 9, e114120.es_CO
dc.relation.referencesKodric-Brown A. (1998). Sexual dichromatism and temporary color changes in the reproduction of fishes. American Zoology, 38, 70-81.es_CO
dc.relation.referencesLa Marca E. (1994). Taxonomy of the frogs of the genus Mannophryne (Amphibia: Anura: Dendrobatida. Asociación de Amigos de Doñana.es_CO
dc.relation.referencesLiao WB, Lu X. (2009a). Sex recognition by male Andrew's toad Bufo andrewsi in a subtropical montane region. Behavioral Processes, 82, 100-103.es_CO
dc.relation.referencesLiao WB, Lu X. (2009b). Male mate choice in the Andrew's toad Bufo andrewsi: a preference for larger females. Journal of Ethology, 27, 413-417.es_CO
dc.relation.referencesLötters S, Jungfer KH, Henkel FW, Schmidt W. (2007). Poison frogs. Biology species Captive husbandry Ed Chimaira, Frankfurt am Main, Ger 668.es_CO
dc.relation.referencesLuiz LF, Contrera FAL, Neckel-Oliveira S. (2015). Diet and tadpole transportation in the poison dart frog Ameerega trivittata (Anura, Dendrobatidae). Herpetological Journal, 25, 187-190.es_CO
dc.relation.referencesMaan ME, Cummings ME. (2009). Sexual dimorphism and directional sexual selection on aposematic signals in a poison frog. Proceedings of the National Academy of Sciences, 106, 19072-19077.es_CO
dc.relation.referencesMaia R, Eliason CM, Bitton P, et al. (2013). pavo: an R package for the analysis, visualization and organization of spectral data. Methods Ecology Evolution, 4, 906-913.es_CO
dc.relation.referencesMaia R, Gruson H, Endler JA, White TE. (2019). pavo 2: new tools for the spectral and spatial analysis of colour in R. Methods Ecology Evolution, 10, 1097-1107.es_CO
dc.relation.referencesMartin P. (1986) Recording methods. Measuring behaviour introductory, 48-69.es_CO
dc.relation.referencesMeuche I, Linsenmair KE, Pröhl H. (2011). Female territoriality in the strawberry poison frog (Oophaga pumilio). Copeia, 2011, 351-356.es_CO
dc.relation.referencesMyers CW, Daly JW. (1976). Preliminary evaluation of skin toxins and vocalizations in taxonomic and evolutionary studies of poison-dart frogs (Dendrobatidae). Bulletin American Museum Natural History,157, 157-177.es_CO
dc.relation.referencesPortik DM, Bell RC, Blackburn DC, et al. (2019). Sexual dichromatism drives diversification within a major radiation of African amphibians. Systematic Biology, 68, 859-875.es_CO
dc.relation.referencesPröhl H. (2005). Territorial behavior in dendrobatid frogs. Journal of Herpetology, 39, 354-365.es_CO
dc.relation.referencesRingler E, Pasukonis A, Hödl W, Ringler M. (2013). Tadpole transport logistics in a Neotropical poison frog: indications for strategic planning and adaptive plasticity in anuran parental care. Frontiers in Zoology, 10, 1-10.es_CO
dc.relation.referencesRosenqvist G. (1990). Male mate choice and female-female competition for mates in the pipefish Nerophis ophidion. Animal Behavior, 39, 1110-1115.es_CO
dc.relation.referencesRuxton GD, Allen WL, Sherratt TN, Speed MP. (2019). Avoiding attack: the evolutionary ecology of crypsis, aposematism, and mimicry. Oxford University Press.es_CO
dc.relation.referencesSage M. (1970). Control of prolactin release and its role in color change in the teleost Gillichthys mirabilis. Journal Experimental Zoology, 173, 121-127.es_CO
dc.relation.referencesSilverstone PA. (1975a). A revision of the poison-arrow frogs of the genus Dendrobates Wagler. Natural History, 21, 1-55.es_CO
dc.relation.referencesSilverstone PA. (1975b). Two New Species of Colostethus (Amphibia, Anura, Dendrobatidae) from Colombia. Natural History Museum of Los Angeles County.es_CO
dc.relation.referencesSilverstone PA. (1976). A revision of the poison-arrow frogs of the genus Phyllobates Bibron in Sagra (Family Dendrobatidae). Natural History, 27, 1-53.es_CO
dc.relation.referencesSummers K, Tumulty J. (2014). Parental care, sexual selection, and mating systems in neotropical poison frogs. In Sexual selection. Elsevier, 289-320.es_CO
dc.relation.referencesSztatecsny M, Preininger D, Freudmann A, et al. (2012). Don't get the blues: conspicuous nuptial colouration of male moor frogs (Rana arvalis) supports visual mate recognition during scramble competition in large breeding aggregations. Behavioral Ecology and Sociobiology, 66, 1587-1593.es_CO
dc.relation.referencesTeam Rs (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA, 2020.es_CO
dc.relation.referencesTwomey E, Johnson JD, Castroviejo-Fisher S, Van Bocxlaer I. (2020a). A ketocarotenoid-based colour polymorphism in the Sira poison frog Ranitomeya sirensis indicates novel gene interactions underlying aposematic signal variation. Mol Ecol 29:2004-2015.es_CO
dc.relation.referencesWells KD. (1980). Behavoral ecology and social organization of a dendrobatid frog (Colostethus inguinalis). Behavioral Ecology and Sociobiology, 6, 199-209.es_CO
dc.relation.referencesWells KD. (2010). The ecology and behavior of amphibians. University of Chicago Press.es_CO
dc.relation.referencesWeygoldt P. (1980) Complex brood care and reproductive behaviour in captive poison-arrow frogs, Dendrobates pumilio O. Schmidt. Behavioral Ecology and Sociobiology, 7, 329-332.es_CO
dc.relation.referencesZimmermann H, Zimmermann E. (1980) Durch Nachzucht erhalten: Der Baumsteiger Dendrobates leucomelas. Aquarium Magazine, 14, 211-217.es_CO
dc.relation.referencesZimmermann H, Zimmermann E. (1981) Sozialverhalten, Fortpflanzungsverhalten und Zucht der Färberfrösche Dendrobates histrionicus und D. lehmanni sowie einiger anderer Dendrobatiden. Zeitschrift des Kölner Zoo, 24, 83-99.es_CO
dc.relation.referencesAbràmoff MD, Magalhães PJ, Ram SJ. (2004). Image processing with ImageJ. Biophotonics International, 11, 36-42.es_CO
dc.relation.referencesDell AI, Bender JA, Branson K, Couzin ID, Polavieja G, Noldus LP, Pérez-Escudero A, Perona P, Straw AD, Wikelski M, Brose U. (2014). Automated image-based tracking and its application in ecology, Trends in Ecology and Evolution, 29, 417-428.es_CO
dc.relation.referencesBolton Sarah, Dickerson Kelsie, Saporito Ralph. (2017). Variable Alkaloid Defenses in the Dendrobatid Poison Frog Oophaga pumilio are Perceived as Differences in Palatability to Arthropods. Journal of Chemical Ecology, 43, 1-17.es_CO
dc.relation.referencesBooth CL. (1990). Evolutionary significance of ontogenetic colour change in animals. Biological Journal of the Linnean Society, 40, 125-163.es_CO
dc.relation.referencesCuthill IC, Allen WL, Arbuckle K, Caspers B, Chaplin G, Hauber ME, Caro T. (2017). The biology of color. Science, 357, 0221.es_CO
dc.relation.referencesDreher CE, Rodríguez A, Cummings ME, Pröhl H. (2017). Mating status correlates with dorsal brightness in some but not all poison frog populations. Ecology and Evolution, 7, 10503-10512.es_CO
dc.relation.referencesEndler J, Mappes J. (2004). Predator mixes and the conspicuousness of aposematic signals. American Naturalist, 163, 532-547.es_CO
dc.relation.referencesGonzalez M, Palacios-Rodriguez P, Hernandez-Restrepo J, González-Santoro M, Amézquita A, Brunetti AE, Carazzone C. (2021). First characterization of toxic alkaloids and volatile organic compounds (V.O.C.s) in the cryptic dendrobatid Silverstoneia punctiventris.Frontiers in Zoology, 18, 1-15.es_CO
dc.relation.referencesHagman M, Forsman A. (2003). Correlated evolution of conspicuous coloration and body size in poison frogs (Dendrobatidae). Evolution, 57, 2904-2910.es_CO
dc.relation.referencesHanlon R. (2007). Cephalopod dynamic camouflage. Current biology, 17, R400-R404.es_CO
dc.relation.referencesMaan ME, Cummings ME. (2012). Poison frog colors are honest signals of toxicity, particularly for bird predators. The American Naturalist, 179, E1-E14.es_CO
dc.relation.referencesMeuche I. (2009). Changes of individual colour patterns in the Central American strawberry poison frog, Oophaga pumilio (Amphibia: Dendrobatidae). Salamandra, 45, 177-179.es_CO
dc.relation.referencesPalacios-Rodríguez P, González-Santoro M, Amézquita A, Brunetti AE. (2022). Sexual dichromatism in a cryptic poison frog is correlated with female tadpole transport. Evolutionary Ecology, 36, 1-10.es_CO
dc.relation.referencesPérez-Escudero A, Vicente-Page J, Hinz RC, Arganda S, De Polavieja GG. (2014). idTracker: tracking individuals in a group by automatically identifying unmarked animals. Methods of Nature, 11, 743-748.es_CO
dc.relation.referencesRichards-Zawacki CL, Yeager J, Bart HP. (2013). No evidence for differential survival or predation between sympatric color morphs of an aposematic poison frog. Evolutionary Ecology, 27, 783- 795.es_CO
dc.relation.referencesRojas B, Endler, JA. (2013). Sexual dimorphism and intra-populational colour pattern variation in the aposematic frog Dendrobates tinctorius. Evolutionary Ecology, 27, 739-753.es_CO
dc.relation.referencesRojas B, Devillechabrolle J, Endler JA. (2014). Paradox lost: variable colour-pattern geometry is associated with differences in movement in aposematic frogs. Biology letters, 10, 20140193.es_CO
dc.relation.referencesRuxton GD, Sherratt TN, Speed MP. (2004). Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals, and Mimicry. Oxford University Press, Oxford.es_CO
dc.relation.referencesSantos JC, Cannatella DC. (2011). Phenotypic integration emerges from aposematism and scale in poison frogs. Proceedings of the National Academy of Sciences, 108, 6175-6180.es_CO
dc.relation.referencesSaporito RA, Donnelly MA, Madden AA, Garraffo HM, Spande TF. (2010). Sex-related differences in alkaloid chemical defenses of the dendrobatid frog Oophaga pumilio from Cayo Nancy, Bocas del Toro, Panama. Journal of Natural Products, 73, 317-321.es_CO
dc.relation.referencesWang IJ. (2011). Inversely related aposematic traits: reduced conspicuousness evolves with increased toxicity in a polymorphic poison-dart frog. Evolution, 65, 1637-1649.es_CO
dc.relation.referencesWang IJ, Shaffer HB. (2008). Rapid color evolution in an aposematic species: A phylogenetic analysis of color variation in the strikingly polymorphic strawberry poison-dart frog. Evolution. International Journal of Organic Evolution, 62, 2742-2759.es_CO
dc.relation.referencesYuan ML, Jung C, Bell RC, Nelson JL. (2022). Aposematic patterns shift continuously throughout the life of poison frogs. Journal of Zoology, 00, 1-8.es_CO
dc.relation.referencesBagnara JT, Fernandez PJ, Fujii R. (2007). On the blue coloration of vertebrates. Pigment Cell Research, 20, 14-26.es_CO
dc.relation.referencesCrothers L, Saporito RA, Yeager J, Lynch K, Friesen C, Richards-Zawacki CL, Cummings M. (2016). Warning signal properties covary with toxicity but not testosterone or aggregate carotenoids in a poison frog. Evolutionary Ecology, 30, 601-621.es_CO
dc.relation.referencesCzeczuga B. (1980). Investigations on carotenoids in Amphibia-II. Carotenoids occurring in various parts of the body of certain species. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 65, 623-630.es_CO
dc.relation.referencesDaly, JW, Myers, CW, Whittaker, N. (1987). Further classification of skin alkaloids from neotropical poison frogs (Dendrobatidae), with a general survey of toxic/noxious substances in the amphibia. Toxicon, 25, 1023-1095.es_CO
dc.relation.referencesDaly JW. (1998). The nature and origin of amphibian alkaloids. In The Alkaloids: Chemistry and Biology, 50, 141-169. Academic Press.es_CO
dc.relation.referencesDaly JW, Spande TF, Garraffo HM. (2005). Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. Journal of Natural Products, 68, 1556-1575.es_CO
dc.relation.referencesDuShane GP. (1935). An experimental study of the origin of pigment cells in Amphibia. Experimental Zoology, 72, 1-31.es_CO
dc.relation.referencesFrost S, Robinson SJ. (1984). Pigment cell differentiation in the fire-bellied toad, Bombina orientalis. Journal of Morphology, 179, 229 -242.es_CO
dc.relation.referencesItoi S. (2013). Larval pufferfish protected by maternal tetrodotoxin. Toxicon, 78, 35-40.es_CO
dc.relation.referencesKanoh S. (1988). Distribution of tetrodotoxin in vertebrates. Recent Advances in Tetrodotoxin Research, 32-44.es_CO
dc.relation.referencesKikuchi DW, Pfennig DW. (2012). A Batesian mimic and its model share color production mechanisms. Current Zoology, 58, 658-667.es_CO
dc.relation.referencesMcGraw KJ. (2006). Mechanics of carotenoid-based coloration. Pages 177-242 in GE. Hill and KJ. McGraw, eds. Bird coloration: mechanisms and measurements. Harvard University Press, Cambridge, MA.es_CO
dc.relation.referencesMebs D, Alvarez JV, Pogoda W, Toennes SW, Köhler G. (2014). Poor alkaloid sequestration by arrow poison frogs of the genus Phyllobates from Costa Rica. Toxicon, 80, 73-77.es_CO
dc.relation.referencesMills M, Patterson LB. (2008). Not just black and white: pigment pattern development and evolution in vertebrates. Seminars in Cell and Developmental Biology, 20, 72 - 81.es_CO
dc.relation.referencesMiyazawa K, Noguchi T. (2001). Distribution and origin of tetrodotoxin. Journal of Toxicology: Toxin Reviews, 20, 11-33.es_CO
dc.relation.referencesNeuwirth M, Daly JW, Myers CW, Tice LW. (1979). Morphology of the granular secretory glands in skin of poison-dart frogs (Dendrobatidae). Tissue and Cell, 11, 755-771.es_CO
dc.relation.referencesNoldus LP, Spink AJ, Tegelenbosch RA. (2001). EthoVision: a versatile video tracking system for automation of behavioral experiments. Behavior Research Methods, Instruments, and Computers, 33, 398-414.es_CO
dc.relation.referencesObika M, Bagnara JT. (1964). Pteridines as pigments in amphibians. Science, 143, 485-487.es_CO
dc.relation.referencesPosso-Terranova A, Andrés JÁ. (2017). Diversification and convergence of aposematic phenotypes: truncated receptors and cellular arrangements mediate rapid evolution of coloration in harlequin poison frogs. Evolution, 71, 2677-2692.es_CO
dc.relation.referencesPrum RO, Torres R. (2003). Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays. Journal of Experimental Biology, 206, 2409-2429.es_CO
dc.relation.referencesSaenko SV, Teyssier J, Van Der Marel D, Milinkovitch MC. (2013). Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards. BMC Biology, 11, 1-12.es_CO
dc.relation.referencesSantos, JC, Baquero, M, Barrio-Amorós, C, Coloma, LA, Erdtmann, LK, Lima, AP, Cannatella, DC. (2014). Aposematism increases acoustic diversification and speciation in poison frogs. Proceedings of the Royal Society B, 281, 20141761.es_CO
dc.relation.referencesSantos JC, Tarvin RD, O'Connell LA. (2016). A review of chemical defense in poison frogs (Dendrobatidae): ecology, pharmacokinetics, and autoresistance. In: Schulte BA, Goodwin TE, Ferkin MH, editors. Chemical signals in vertebrates 13. Cham: Springer International Publishing; 2016. 305-37.es_CO
dc.relation.referencesSaporito RA, Donnelly MA, Spande TF, Garraffo HM. (2012). A review of chemical ecology in poison frogs. Chemoecology, 22, 159-168.es_CO
dc.relation.referencesSaporito RA, Spande TF, Garraffo HM, Donnelly MA. (2009). Arthropod alkaloids in poison frogs: a review of the dietary hypothesis. Heterocycles, 79, 277-297.es_CO
dc.relation.referencesSaporito RA, Donnelly MA, Norton RA, Garraffo HM, Spande TF, Daly JW. (2007). Oribatid mites as a major dietary source for alkaloids in poison frogs. Proceedings of the National Academy of Sciences, 104, 8885-8890.es_CO
dc.relation.referencesSaporito RA, Zuercher R, Roberts M, Gerow KG, Donnelly MA. (2007). Experimental evidence for aposematism in the dendrobatid poison frog Oophaga pumilio. Copeia, 2007, 1006-1011.es_CO
dc.relation.referencesSegami MJ, Rudh A, Rogell B, Odeen A, Lovlie H, Rosher C, Qvarnstrom A. (2017). Cryptic female Strawberry poison frogs experience elevated predation risk when associating with an aposematic partner. Ecology and Evolution, 7, 744-750.es_CO
dc.relation.referencesShawkey M, d'Alba L. (2017). Interactions between colour-producing mechanisms and their effects on the integumentary colour palette. Philosopical Transactions of the Royal Society B, 372, 20160536.es_CO
dc.relation.referencesSilverstone PA. (1975). A revision of the poison-arrow frogs of the genus Dendrobates Wagler. Natural History, 21, 1-55.es_CO
dc.relation.referencesShawkey M, Hill G. (2005). Carotenoids need structural colours to shine. Biology Letters, 1, 121- 124.es_CO
dc.relation.referencesStokes AN, Ducey PK, Neuman-Lee L, Hanifin CT, French SS, Pfrender ME, Brodie Jr ED. (2014). Confirmation and distribution of tetrodotoxin for the first time in terrestrial invertebrates: two terrestrial flatworm species (Bipalium adventitium and Bipalium kewense). PLoS One, 9, e100718.es_CO
dc.relation.referencesTarvin RD, Santos JC, O'Connell LA, Zakon HH, Cannatella DC. (2016). Convergent substitutions in a sodium channel suggest multiple origins of toxin resistance in poison frogs. Molecular Biology and Evolution, 33, 1068-1080.es_CO
dc.relation.referencesTwomey E, Kain M, Claeys M, Summers K, Castroviejo-Fisher S, Bocxlaer IV. (2020). Mechanisms for color convergence in a mimetic radiation of poison frogs. The American Naturalist, 195, E132-E149.es_CO
dc.relation.referencesVaelli P M, Theis KR, Williams JE, O'Connell LA, Foster JA, Eisthen HL. (2020). The skin microbiome facilitates adaptive tetrodotoxin production in poisonous newts. Elife, 9, e53898.es_CO
dc.relation.referencesWilliams BL, Hanifin CT, Brodie ED. (2012). Predators usurp prey defenses? Toxicokinetics of tetrodotoxin in common garter snakes after consumption of rough-skinned newts. Chemoecology, 22, 179-185.es_CO
dc.relation.referencesYasumoto T, Yotsu-Yamashita M. (1996). Chemical and etiological studies on tetrodotoxin and its analogs. Journal of Toxicology: Toxin Reviews, 15, 81-90.es_CO
dc.relation.referencesAmézquita A, Ramos Ó, González MC, Rodríguez C, Medina I, Simões PI, Lima A P. (2017). Conspicuousness, color resemblance, and toxicity in geographically diverging mimicry: The pan-Amazonian frog Allobates femoralis. Evolution, 71, 1039-1050.es_CO
dc.relation.referencesAndrews RM, Pough FH. (1985). Metabolism of squamate reptiles: allometric and ecological relationships. Physiological Zoology, 58, 214-231.es_CO
dc.relation.referencesArbuckle K, Brockhurst, M, Speed MP. (2013). Does chemical defence increase niche space? A phylogenetic comparative analysis of the Musteloidea. Evolutionary Ecology, 27, 863-881.es_CO
dc.relation.referencesBorror DJ, Triplehorn A, Johnson NF. (1992). An introduction to the study of insects 6th Ed. New York, Saunders College Publishing.es_CO
dc.relation.referencesBrusa O, Bellati A, Meuche I, Mundy NI, Pröhl H. (2013). Divergent evolution in the polymorphic granular poison-dart frog, Oophaga granulifera: genetics, coloration, advertisement calls and morphology. Journal of Biogeographic, 40, 394-408.es_CO
dc.relation.referencesBurton T, Killen SS, Armstrong, JD, Metcalfe NB. (2011). What causes intraspecific variation in resting metabolic rate and what are its ecological consequences?. Proceedings of the National Academy of Sciences, 278, 3465-3473.es_CO
dc.relation.referencesDarst CR, Cummings ME, Cannatella DC. (2006a). A mechanism for diversity in warning signals: conspicuousness versus toxicity in poison frogs. Proceedings of the National Academy of Sciences, 103, 5852-5857.es_CO
dc.relation.referencesDarst CR, Cummings ME. (2006b). Predator learning favours mimicry of a less-toxic model in poison frogs. Nature, 440, 208-211.es_CO
dc.relation.referencesEdmunds M. (1974). Defence in Animals: A survey of antipredator defences. Longman, New York.es_CO
dc.relation.referencesFrappell P, Schultz T, Christian K. (2002). Oxygen transfer during aerobic exercise in a varanid lizard Varanus mertensi is limited by the circulation. Journal of Experimental Biology, 205, 2725-2736.es_CO
dc.relation.referencesFernández F. 2003. (ed.). Introducción a las hormigas de la región neotropical. Instituto Alexander von Humboldt, Bogotá, D.C.es_CO
dc.relation.referencesGermain RM, Hart SP, Turcotte MM, Otto SP, Sakarchi J, Rolland J et al. (2021). On the origin of coexisting species. Trends Ecology and Evolution, 36, 284-293.es_CO
dc.relation.referencesGordon CE. (2000). The coexistence of species. Revista Chilena de Historia Natural, 73, 175-198.es_CO
dc.relation.referencesGrether GF, Peiman KS, Tobias JA, Robinson BW. (2017). Causes and consequences of behavioral interference between species. Trends Ecology and Evolution, 32, 760-772.es_CO
dc.relation.referencesJohn-Alder HB, Bennett AF. (1981). Thermal dependence of endurance and locomotory energetics in a lizard.American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 241, 342-349.es_CO
dc.relation.referencesKim SY, Velando A. (2015). Phenotypic integration between antipredator behavior and camouflage pattern in juvenile sticklebacks. Evolution, 69, 830-838.es_CO
dc.relation.referencesKrebs CJ. (1999). Ecological Methodology. Second edition. Addison.es_CO
dc.relation.referencesLevins R. (1968). Evolution in changing environments: some theoretical explorations (No. 2). Princeton University.es_CO
dc.relation.referencesMappes J, Marples NM, Endler, JA. (2005). The complex business of survival by aposematism. Trends Ecology and Evolution. 20, 598-603.es_CO
dc.relation.referencesMartin P (1986) Recording methods. Meas Behav Introd Guid 48-69.es_CO
dc.relation.referencesNespolo RF, Franco M. (2007). Whole-animal metabolic rate is a repeatable trait: a meta-analysis. Journal Experimental Biology, 210, 2000-2005.es_CO
dc.relation.referencesPalacios C, Valencia C. (2015). Hábitos tróficos de dos especies sintópicas de carácidos en una quebrada de alta montaña en los Andes colombianos, Revista Mexicana de Biologia, 86, 782-788.es_CO
dc.relation.referencesPalacios-Rodríguez P, González-Santoro M, Amézquita A, Brunetti AE. (2022). Sexual dichromatism in a cryptic poison frog is correlated with female tadpole transport. Evolutionary Ecology, 36, 156-162.es_CO
dc.relation.referencesPough FH, Taigen TL. (1990). Metabolic correlates of the foraging and social behaviour of dart- poison frogs. Anim Behav 39:145-155.es_CO
dc.relation.referencesPrudic KL, Oliver JC, Sperling FA. (2007). The signal environment is more important than diet or chemical specialization in the evolution of warning coloration. Proceedings of the National Academy of Sciences, 104, 19381-19386.es_CO
dc.relation.referencesRodríguez, C, Amézquita, A, Ringler, M, Pasukonis, A, , Hödl, W. (2020). Calling amplitude flexibility and acoustic spacing in the territorial frog Allobates femoralis. Behavioral Ecology and Sociobiology, 74, 1-10.es_CO
dc.relation.referencesRichard-Zawacki CL, Wang IJ, Summers K. (2012). Mate choice and the genetic basis for colour variation in a polymorphic dart frog: inferences from a wild pedigree. Molecular Ecology, 21, 3879-3892.es_CO
dc.relation.referencesRuxton GD, Sherratt TN, Speed MP. (2004). Avoiding attack: The evolutionary ecology of crypsis, warning signals, and mimicry. Oxford University Press, Oxford.es_CO
dc.relation.referencesSantos JC, Coloma LA, Cannatella DC. (2003). Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proceedings of the National Academy of Sciences, 100, 12792-12797.es_CO
dc.relation.referencesSpeed MP, Brockhurst MA, Ruxton GD. (2010). The dual benefits of aposematism: predator avoidance and enhanced resource collection. Evolution, 64, 1622-1633.es_CO
dc.relation.referencesStevens M, Cuthill IC. (2006). Disruptive coloration, crypsis and edge detection in early visual processing. Proceedings Royal Society B, 273, 2141-2147.es_CO
dc.relation.referencesTaigen TL, Emerson SB, Pough FH. (1982). Ecological correlates of anuran exercisephysiology. Oecologia, 52, 49-56.es_CO
dc.relation.referencesThayer G H. (1909). Concealing coloration in the animal kingdom. An exposition of the laws of disguise through color and pattern; Being a summary of Abbott H. Thayer's discoveries. Macmillan, New York.es_CO
dc.relation.referencesToft CA. (1995). Evolution of diet specialization in poison-dart frogs (Dendrobatidae). Herpetological, 51, 202-21.es_CO
dc.relation.referencesWillink B, Brenes-Mora E, Bolaños F, Pröhl H. (2013). Not everything is black and white: color and behavioral variation reveal a continuum between cryptic and aposematic strategies in a polymorphic poison frog. Evolution, 67, 2783-2794.es_CO
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentTextes_CO
dc.type.redcolhttps://purl.org/redcol/resource_type/TD
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.subject.themesBiologíaes_CO


Ficheros en el ítem

Nombre: Thesis final.pdf

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem