Mostrar el registro sencillo del ítem
Efecto de la haploinsuficiencia durante la regeneración renal en portadores del alelo hans6 en peces cebra (Danio rerio)
dc.contributor.advisor | Garavito Aguilar, Zayra Viviana | |
dc.contributor.author | Vargas Reyes, Diana Manuela | |
dc.date.accessioned | 2023-02-03T14:46:51Z | |
dc.date.available | 2023-02-03T14:46:51Z | |
dc.date.issued | 2023-02-02 | |
dc.identifier.uri | http://hdl.handle.net/1992/64570 | |
dc.description.abstract | En este trabajo se logró evidenciar que una sola copia del alelo mutante hans6 es suficiente para que haya una mayor expresión génica de los genes pax2 y ATPasa NA+/K durante la regeneración y en condiciones basales previamente no identificadas. Aunque se conocía que había mayores dimensiones del campo renal en mutantes, no se conocía el efecto de haploinsuficiencia en portadores de la mutación durante la regeneración. | |
dc.format.extent | 21 páginas | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de los Andes | es_CO |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | * |
dc.title | Efecto de la haploinsuficiencia durante la regeneración renal en portadores del alelo hans6 en peces cebra (Danio rerio) | |
dc.type | Trabajo de grado - Pregrado | es_CO |
dc.publisher.program | Biología | es_CO |
dc.subject.keyword | Regeneración | |
dc.subject.keyword | Pez cebra | |
dc.subject.keyword | Riñón | |
dc.subject.keyword | Hibridación in situ | |
dc.subject.keyword | hand2 | |
dc.subject.keyword | pax2 | |
dc.subject.keyword | ATPasa | |
dc.publisher.faculty | Facultad de Ciencias | es_CO |
dc.publisher.department | Departamento de Ciencias Biológicas | es_CO |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dc.description.degreename | Biólogo | es_CO |
dc.description.degreelevel | Pregrado | es_CO |
dc.contributor.researchgroup | BIOLDES | es_CO |
dc.description.researcharea | Biología del desarrollo | es_CO |
dc.identifier.instname | instname:Universidad de los Andes | es_CO |
dc.identifier.reponame | reponame:Repositorio Institucional Séneca | es_CO |
dc.identifier.repourl | repourl:https://repositorio.uniandes.edu.co/ | es_CO |
dc.relation.references | Ávila Jiménez, E. (2021). Medidas estándar para el análisis morfométrico del riñón durante la regeneración en pez cebra (danio rerio). Universidad de los Andes. | es_CO |
dc.relation.references | Dai, Y.-S., & Cserjesi, P. (2002). The Basic Helix-Loop-Helix Factor, HAND2, Functions as a Transcriptional Activator by Binding to E-boxes as a Heterodimer. Journal of Biological Chemistry, 277(15), 12604-12612. https://doi.org/10.1074/jbc.M200283200 | es_CO |
dc.relation.references | Dooley, K. (2000). Zebrafish: A model system for the study of human disease. Current Opinion in Genetics & Development, 10(3), 252-256. https://doi.org/10.1016/S0959-437X(00)00074-5 | es_CO |
dc.relation.references | Drummond, B. E. (2016). Insights into kidney stem cell development and regeneration using zebrafish. World Journal of Stem Cells, 8(2), 22. https://doi.org/10.4252/wjsc.v8.i2.22 | es_CO |
dc.relation.references | Drummond, I. A. (2005). Kidney Development and Disease in the Zebrafish. Journal of the American Society of Nephrology, 16(2), 299-304. https://doi.org/10.1681/ASN.2004090754 | es_CO |
dc.relation.references | Duran, I. (2009). Modelos de regeneración. https://www.researchgate.net/publication/28312148_Modelos_de_regeneracion. University of Malaga | es_CO |
dc.relation.references | Esbaugh, A. J., Brix, K. V., & Grosell, M. (2019). Na + K + ATPase isoform switching in zebrafish during transition to dilute freshwater habitats. Proceedings of the Royal Society B: Biological Sciences, 286(1903), 20190630. https://doi.org/10.1098/rspb.2019.0630 | es_CO |
dc.relation.references | Gallegos, T. F., Kamei, C. N., Rohly, M., & Drummond, I. A. (2019). Fibroblast growth factor signaling mediates progenitor cell aggregation and nephron regeneration in the adult zebrafish kidney. Developmental Biology, 454(1), 44-51. https://doi.org/10.1016/j.ydbio.2019.06.011 | es_CO |
dc.relation.references | Garavito-Aguilar, Z. V., Riley, H. E., & Yelon, D. (2010). Hand2 ensures an appropriate environment for cardiac fusion by limiting Fibronectin function. Development, 137(19), 3215-3220. https://doi.org/10.1242/dev.052225 | es_CO |
dc.relation.references | Gerlach, G. F., Schrader, L. N., & Wingert, R. A. (2011). Dissection of the Adult Zebrafish Kidney. Journal of Visualized Experiments, 54, 2839. https://doi.org/10.3791/2839 | es_CO |
dc.relation.references | Imgrund, M., Gröne, E., Gröne, Hermann.-Josef., Kretzler, M., Holzman, L., Schlöndorff, D., & Rothenpieler, U. W. (1999). Re-expression of the developmental gene Pax-2 during experimental acute tubular necrosis in mice1. Kidney International, 56(4), 1423-1431. https://doi.org/10.1046/j.1523-1755.1999.00663.x | es_CO |
dc.relation.references | Jerman, S., & Sun, Z. (2017). Using Zebrafish to Study Kidney Development and Disease. En Current Topics in Developmental Biology (Vol. 124, pp. 41-79). Elsevier. https://doi.org/10.1016/bs.ctdb.2016.11.008 | es_CO |
dc.relation.references | Kamei, C. N., Liu, Y., & Drummond, I. A. (2015). Kidney Regeneration in Adult Zebrafish by Gentamicin Induced Injury. Journal of Visualized Experiments, 102, 51912. https://doi.org/10.3791/51912 | es_CO |
dc.relation.references | Koshida, S., Kishimoto, Y., Ustumi, H., Shimizu, T., Furutani-Seiki, M., Kondoh, H., & Takada, S. (2005). Integrin-5-Dependent Fibronectin Accumulation for Maintenance of Somite Boundaries in Zebrafish Embryos. Developmental Cell, 8(4), 587-598. https://doi.org/10.1016/j.devcel.2005.03.006 | es_CO |
dc.relation.references | Kroeger, P. T., & Wingert, R. A. (2014). Using zebrafish to study podocyte genesis during kidney development and regeneration. Genesis, 52(9), 771-792. https://doi.org/10.1002/dvg.22798 | es_CO |
dc.relation.references | Kwong, R. W. M., Kumai, Y., & Perry, S. F. (2013). Evidence for a role of tight junctions in regulating sodium permeability in zebrafish (Danio rerio) acclimated to ion-poor water. Journal of Comparative Physiology B, 183(2), 203-213. https://doi.org/10.1007/s00360-012-0700-9 | es_CO |
dc.relation.references | Lieschke, G. J., & Currie, P. D. (2007). Animal models of human disease: Zebrafish swim into view. Nature Reviews Genetics, 8(5), 353-367. https://doi.org/10.1038/nrg2091 | es_CO |
dc.relation.references | McCampbell, K. K., Springer, K. N., & Wingert, R. A. (2014). Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney. Journal of Visualized Experiments, 90, 51644. https://doi.org/10.3791/51644 | es_CO |
dc.relation.references | McCampbell, K. K., Springer, K. N., & Wingert, R. A. (2015). Atlas of Cellular Dynamics during Zebrafish Adult Kidney Regeneration. Stem Cells International, 2015, 1-19. https://doi.org/10.1155/2015/547636 | es_CO |
dc.relation.references | Otálora Tarazona, S. (2018). Caracterizacion estructural del desarrollo pronefrico del Pez Cebra (Danio rerio). Universidad de los Andes. | es_CO |
dc.relation.references | Outtandy, P., Russell, C., Kleta, R., & Bockenhauer, D. (2019). Zebrafish as a model for kidney function and disease. Pediatric Nephrology, 34(5), 751-762. https://doi.org/10.1007/s00467-018-3921-7 | es_CO |
dc.relation.references | Perens, E. A., Garavito-Aguilar, Z. V., Guio-Vega, G. P., Peña, K. T., Schindler, Y. L., & Yelon, D. (2016). Hand2 inhibits kidney specification while promoting vein formation within the posterior mesoderm. ELife, 5, e19941. https://doi.org/10.7554/eLife.19941 | es_CO |
dc.relation.references | Poureetezadi, S. J., & Wingert, R. A. (2016). Little fish, big catch: Zebrafish as a model for kidney disease. Kidney International, 89(6), 1204-1210. https://doi.org/10.1016/j.kint.2016.01.031 | es_CO |
dc.relation.references | Prummel, K. D., Hess, C., Nieuwenhuize, S., Parker, H. J., Rogers, K. W., Kozmikova, I., Racioppi, C., Brombacher, E. C., Czarkwiani, A., Knapp, D., Burger, S., Chiavacci, E., Shah, G., Burger, A., Huisken, J., Yun, M. H., Christiaen, L., Kozmik, Z., Müller, P., ... Mosimann, C. (2019). A conserved regulatory program initiates lateral plate mesoderm emergence across chordates. Nature Communications, 10(1), 3857. https://doi.org/10.1038/s41467-019-11561-7 | es_CO |
dc.relation.references | Sander, V., & Davidson, A. J. (2014). Kidney Injury and Regeneration in Zebrafish. Seminars in Nephrology, 34(4), 437-444. https://doi.org/10.1016/j.semnephrol.2014.06.010 | es_CO |
dc.relation.references | Shi, W., Fang, Z., Li, L., & Luo, L. (2015). Using zebrafish as the model organism to understand organ regeneration. Science China Life Sciences, 58(4), 343-351. https://doi.org/10.1007/s11427-015-4838-z | es_CO |
dc.relation.references | Sun, L., Zou, Z., Collodi, P., Xu, F., Xu, X., & Zhao, Q. (2005). Identification and characterization of a second fibronectin gene in zebrafish. Matrix Biology, 24(1), 69-77. https://doi.org/10.1016/j.matbio.2004.12.002 | es_CO |
dc.relation.references | Uribe Montes, L., Garavito Aguilar, Z. V., Uribe Ardila J., & Meji¿a Gaviria N. (2020). Fibronectin participation in zebrafish (danio rerio) kidney regeneration (dissertation). Uniandes. | es_CO |
dc.relation.references | Van Why, S. K., Mann, A. S., Ardito, T., Siegel, N. J., & Kashgarian, M. (1994). Expression and molecular regulation of Na(+)-K(+)-ATPase after renal ischemia. American Journal of Physiology-Renal Physiology, 267(1), F75-F85. https://doi.org/10.1152/ajprenal.1994.267.1.F75 | es_CO |
dc.relation.references | Yelon, D., Ticho, B., Halpern, M. E., Ruvinsky, I., Ho, R. K., Silver, L. M., & Stainier, D. Y. (2000). The bHLH transcription factor hand2 plays parallel roles in zebrafish heart and pectoral fin development. Development, 127(12), 2573-2582. https://doi.org/10.1242/dev.127.12.2573 | es_CO |
dc.relation.references | Zhou, W., Boucher, R. C., Bollig, F., Englert, C., & Hildebrandt, F. (2010). Characterization of mesonephric development and regeneration using transgenic zebrafish. American Journal of Physiology-Renal Physiology, 299(5), F1040-F1047. https://doi.org/10.1152/ajprenal.00394.2010 | es_CO |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | es_CO |
dc.type.redcol | http://purl.org/redcol/resource_type/TP | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.licence | Attribution-NoDerivatives 4.0 Internacional | * |
dc.subject.themes | Biología | es_CO |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Tesis/Trabajos de Grado [629]