Mostrar el registro sencillo del ítem
Detección de anomalías en procesos de gestión sanitaria usando métodos de analítica de procesos
dc.contributor.advisor | González Rojas, Oscar Fernando | |
dc.contributor.author | Vargas Holguín, Oswaldo | |
dc.date.accessioned | 2023-02-03T14:48:10Z | |
dc.date.available | 2023-02-03T14:48:10Z | |
dc.date.issued | 2023-02-01 | |
dc.identifier.uri | http://hdl.handle.net/1992/64571 | |
dc.description | Este documento evalúa la pertinencia de diferentes métodos de analítica de procesos para la detección de anomalías del proceso ¿Prestación de Servicios Asistenciales" en la empresa EPS Sanitas. | |
dc.description.abstract | En algunos aspectos de la asistencia sanitaria, la seguridad del paciente es un factor importante de preocupación y los métodos que han sido desarrollados para ayudar a detectar una situación anómala, no brindan la inmediatez que se requiere para reaccionar a tiempo y evitar una situación en la que el bienestar de los pacientes está comprometido. El objetivo del presente estudio es establecer la base teórica de la detección de anomalías en procesos y usar métodos, basados en Minería de Procesos y Deep Learning para evaluar su pertinencia en la detección de anomalías conducentes a identificar la existencia de situaciones problemáticas para el paciente. | |
dc.description.sponsorship | Keralty | es_CO |
dc.description.sponsorship | EPS Sanitas | es_CO |
dc.format.extent | 102 páginas | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de los Andes | es_CO |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | * |
dc.title | Detección de anomalías en procesos de gestión sanitaria usando métodos de analítica de procesos | |
dc.type | Trabajo de grado - Maestría | es_CO |
dc.publisher.program | Maestría en Ingeniería de Sistemas y Computación | es_CO |
dc.subject.keyword | Anomaly detection | |
dc.subject.keyword | Deep learning | |
dc.publisher.faculty | Facultad de Ingeniería | es_CO |
dc.publisher.department | Departamento de Ingeniería Sistemas y Computación | es_CO |
dc.contributor.jury | Núñez Castro, Haydemar María | |
dc.contributor.jury | Camargo Chávez, Manuel Alejandro | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dc.description.degreename | Magíster en Ingeniería de Sistemas y Computación | es_CO |
dc.description.degreelevel | Maestría | es_CO |
dc.description.researcharea | Modelos de Aprendizaje de Máquina | es_CO |
dc.identifier.instname | instname:Universidad de los Andes | es_CO |
dc.identifier.reponame | reponame:Repositorio Institucional Séneca | es_CO |
dc.identifier.repourl | repourl:https://repositorio.uniandes.edu.co/ | es_CO |
dc.relation.references | [1] S. Alla and S. K. Adari, Beginning Anomaly Detection Using Python-Based Deep Learning. New York: Apress Media, 2019. | es_CO |
dc.relation.references | [2] ¿Asistencia sanitaria - Wikipedia, la enciclopedia libre.¿ https://es.wikipedia.org/wiki/Asistencia_sanitaria (accessed Jun. 08, 2021). | es_CO |
dc.relation.references | [3] G. N.A., ¿Technologies for Analyzing and Improving Healthcare Processes. In: Leal Filho W., Wall T., Azul A., Brandli L., Özuyar P. (eds) Good Health and Well-Being. Encyclopedia of the UN Sustainable Development Goals,¿ Springer, Cham, 2020, p. 2. | es_CO |
dc.relation.references | [4] WHO Centre for Health Development, ¿A Glossary of Terms for Community Health Care and Services for Older Persons. WHO/WKC/Tech.Ser./04.2.2004,¿ vol. 5, Kobe, Japan: Kobe, Japan¿: WHO Centre for Health Development, 2014. | es_CO |
dc.relation.references | [5] K. Grumbach and T. Bodenheimer, ¿The Organization of Health Care,¿ JAMA J. Am. Med. Assoc., vol. 273, no. 2, pp. 160¿167, 1995, doi: 10.1001/jama.1995.03520260082038. | es_CO |
dc.relation.references | [6] L. Shi, ¿The Impact of Primary Care: A Focused Review,¿ Scientifica (Cairo)., vol. 2012, pp. 1¿22, 2012, doi: 10.6064/2012/432892. | es_CO |
dc.relation.references | [7] B. Starfield, ¿Is primary care essential?,¿ Lancet, vol. 344, no. 8930, pp. 1129¿1133, 1994, doi: 10.1016/S0140-6736(94)90634-3. | es_CO |
dc.relation.references | [8] S. M. Schneider, G. C. Hamilton, P. Moyer, and J. S. Stapczynski, ¿Definition of Emergency Medicine,¿ Acad. Emerg. Med., vol. 5, no. 4, pp. 348¿351, Apr. 1998, doi: 10.1111/j.1553-2712.1998.tb02720.x. | es_CO |
dc.relation.references | [9] B. Bergman, D. Neuhauser, and L. Provost, ¿Five main processes in healthcare: A citizen perspective,¿ in BMJ Quality and Safety, vol. 20, no. SUPPL. 1, BMJ Qual Saf, 2011, pp. 11¿12. | es_CO |
dc.relation.references | [10] ¿Sistema Obligatorio de Garantía de Calidad en Salud (SOGCS).¿ https://www.minsalud.gov.co/salud/PServicios/Paginas/sistema-obligatorio-garantia-calidad-SOGC.aspx. | es_CO |
dc.relation.references | [11] ¿Biblioteca Nacional de Indicadores de Calidad de la Atención en Salud,¿ 2011. | es_CO |
dc.relation.references | [12] R. S. Mans, W. M. P. Van Der Aalst, and R. J. B. Vanwersch, Process Mining in Healthcare Evaluating and Exploiting Operational Healthcare Processes. SpringerBriefs in Business Process Management, 2015. | es_CO |
dc.relation.references | [13] L. Reinkemeyer and W. Van Der Aalst, Process Mining in Action: Principles, Use Cases and Outlook. Springer, 2020. | es_CO |
dc.relation.references | [14] W. M. P. Aalst, Process Mining: Discovery, Conformance and Enhancement of Business Processes, vol. 136, no. 2. Berlin: Springer-Verlag, 2011. | es_CO |
dc.relation.references | [15] T. Nolle, A. Seeliger, N. Thoma, and M. Mühlhäuser, ¿DeepAlign: Alignment-Based Process Anomaly Correction Using Recurrent Neural Networks,¿ Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12127 LNCS, pp. 319¿333, 2020, doi: 10.1007/978-3-030-49435-3_20. | es_CO |
dc.relation.references | [16] M. Dumas, M. La Rosa, J. Mendling, and H. A. Reijers, Fundamentals of business process management: Second Edition. Springer Publishing Company, 2018. | es_CO |
dc.relation.references | [17] S. Onoda, Y. Ikkai, T. Kobayashi, and N. Komoda, ¿Definition of deadlock patterns for business processes workflow models,¿ in Proceedings of the Thirtysecond Annual Hawaii International Conference on System Sciences, 2003, p. 11, doi: 10.1109/hicss.1999.772966. | es_CO |
dc.relation.references | [18] T. Nolle, A. Seeliger, and M. Mühlhäuser, ¿BINet: Multivariate business process anomaly detection using deep learning,¿ Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11080 LNCS, pp. 271¿287, 2018, doi: 10.1007/978-3-319-98648-7_16. | es_CO |
dc.relation.references | [19] V. R. Konasani and S. Kadre, Practical Business Analytics Using SAS. Apress, 2015. | es_CO |
dc.relation.references | [20] ¿Estadística.¿ https://es.wikipedia.org/wiki/Estadística. | es_CO |
dc.relation.references | [21] F. Richter, Y. Lu, L. Zellner, J. Sontheim, and T. Seidl, ¿TOAD: Trace Ordering for Anomaly Detection,¿ Proc. - 2020 2nd Int. Conf. Process Mining, ICPM 2020, pp. 169¿176, 2020, doi: 10.1109/ICPM49681.2020.00033. | es_CO |
dc.relation.references | [22] Fabio Bezerra, J. Wainer, and W. M. P. van Der, ¿Detection Using Process Mining,¿ Springer Berlin Heidelb., 2006. | es_CO |
dc.relation.references | [23] R. Sarno, F. Sinaga, and K. R. Sungkono, ¿Anomaly detection in business processes using process mining and fuzzy association rule learning,¿ J. Big Data, vol. 7, no. 1, 2020, doi: 10.1186/s40537-019-0277-1. | es_CO |
dc.relation.references | [24] M. Camargo, M. Dumas, and O. González-Rojas, ¿Learning Accurate LSTM Models of Business Processes,¿ Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11675 LNCS, pp. 286¿302, 2019, doi: 10.1007/978-3-030-26619-6_19. | es_CO |
dc.relation.references | [25] M. Torres Díaz, O. González Rojas, and M. Camargo, ¿Deep Learning Transformer Architecture for Predictive Business Processes Monitoring and Anomaly Detection,¿ 2020 | es_CO |
dc.relation.references | [26] O. Calin, Deep Learning Architectures A Mathematical Approach. Springer Series in the Data Sciences, 2020. | es_CO |
dc.relation.references | [27] I. Teinemaa, M. Dumas, M. . Rosa, and F. . Maggi, ¿Outcome-oriented predictive process monitoring: Review and benchmark.,¿ 2017. | es_CO |
dc.relation.references | [28] ¿Discriminative Model.¿ https://en.wikipedia.org/wiki/Discriminative_model. | es_CO |
dc.relation.references | [29] ¿Introduction to generative and discriminative models.¿ https://towardsdatascience.com/introduction-to-generative-and-discriminative-models-9c9ef152b9af. | es_CO |
dc.relation.references | [30] J. Moolayil, Learn Keras for Deep Neural Networks. 2019. | es_CO |
dc.relation.references | [31] A. de S. Correia and E. L. Colombini, ¿Attention, please! A survey of Neural Attention Models in Deep Learning,¿ 2021, [Online]. Available: http://arxiv.org/abs/2103.16775. | es_CO |
dc.relation.references | [32] D. Bahdanau, K. H. Cho, and Y. Bengio, ¿Neural machine translation by jointly learning to align and translate,¿ 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., 2015. | es_CO |
dc.relation.references | [33] M. Phi, ¿Illustrated Guide to Transformers - Step by Step Explanation,¿ Towards Data Science, 2020. https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0. | es_CO |
dc.relation.references | [34] A. Vaswani et al., ¿Attention is all you need,¿ Adv. Neural Inf. Process. Syst., vol. 2017-Decem, pp. 5999¿6009, 2017. | es_CO |
dc.relation.references | [35] R. Kozik, M. Pawlicki, and M. Chora¿, ¿A new method of hybrid time window embedding with transformer-based traffic data classification in IoT-networked environment,¿ Pattern Anal. Appl., 2021, doi: 10.1007/s10044-021-00980-2. | es_CO |
dc.relation.references | [36] S. B. Buchbinder and J. M. Thompson, Career Opportunities in Health Care Management. Jones and Bartlett Publishers, 2018. | es_CO |
dc.relation.references | [37] J. S. Toussaint and K. Correia, ¿Why Process Is U.S. Health Care¿s Biggest Problem.,¿ Harvard Business Review, 2018. https://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=129104929&site=ehost-live%0Ahttp://hbr.org/product/a/an/H0488K-PDF-ENG. | es_CO |
dc.relation.references | [38] K. Z. Pedersen, Organizing Patient Safety. 2018. | es_CO |
dc.relation.references | [39] J. T. Reason, Human error, vol. 29, no. 02. New York: Cambridge University Press, 1991. | es_CO |
dc.relation.references | [40] ¿Use Cases Apromore.¿ https://apromore.org/use-cases/. | es_CO |
dc.relation.references | [41] ¿Apromore Key Features.¿ https://apromore.org/key-features/. | es_CO |
dc.relation.references | [42] S. M. R. Beheshti et al., Process analytics: Concepts and techniques for querying and analyzing process data. Springer Publishing Company, 2016. | es_CO |
dc.relation.references | [43] J. A. Jiménez Moscoso, ¿Un criterio para identificar datos atípicos,¿ Rev. Colomb. Estad., vol. 27, no. 2, pp. 109¿121, 2004. | es_CO |
dc.relation.references | [44] J. A. Jiménez, ¿Una generalización de la estadística de Cook,¿ Rev. Colomb. Estad., vol. 24, no. 2, pp. 111¿120, 2001. | es_CO |
dc.relation.references | [45] Microsoft, ¿Transparency Note: Anomaly Detector,¿ p. 6, 2022. | es_CO |
dc.relation.references | [46] J. J. Montaño and A. Palmer, ¿Numeric sensitivity analysis applied to feedforward neural networks,¿ Neural Comput. Appl., vol. 12, no. 2, pp. 119¿125, 2003, doi: 10.1007/s00521-003-0377-9. | es_CO |
dc.relation.references | [47] J. Pearl, ¿Theoretical Impediments to Machine Learning With Seven Sparks from the Causal Revolution,¿ pp. 3¿3, 2018, doi: 10.1145/3159652.3176182. | es_CO |
dc.relation.references | [48] A. Gonfalonieri, ¿Introduction to Causality in Machine Learning,¿ Towards Data Science, 2020. https://towardsdatascience.com/introduction-to-causality-in-machine-learning-4cee9467f06f. | es_CO |
dc.relation.references | [49] D. S. Yeung, I. Cloete, D. Shi, and W. W.Y. Ng, Sensitivity Analysis for Neural Networks, vol. 53, no. 9. Springer, 2013. | es_CO |
dc.relation.references | [50] A. Fan, T. Lavril, E. Grave, A. Joulin, and S. Sukhbaatar, ¿Addressing Some Limitations of Transformers with Feedback Memory,¿ 2020, [Online]. Available: http://arxiv.org/abs/2002.09402. | es_CO |
dc.relation.references | [51] M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and ¿. Kaiser, ¿Universal transformers,¿ 7th Int. Conf. Learn. Represent. ICLR 2019, 2019. | es_CO |
dc.relation.references | [52] K. Tran, A. Bisazza, and C. Monz, ¿The importance of being recurrent for modeling hierarchical structure,¿ Proc. 2018 Conf. Empir. Methods Nat. Lang. Process. EMNLP 2018, pp. 4731¿4736, 2020, doi: 10.18653/v1/d18-1503. | es_CO |
dc.relation.references | [53] M. Hahn, ¿Theoretical limitations of self-attention in neural sequence models,¿ Trans. Assoc. Comput. Linguist., 2020, doi: 10.1162/tacl_a_00306. | es_CO |
dc.relation.references | [54] ¿Learning about the Attention Mechanism and the Transformer Model.¿ https://deepfrench.gitlab.io/deep-learning-project/. | es_CO |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | es_CO |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.licence | Attribution-NoDerivatives 4.0 Internacional | * |
dc.subject.themes | Ingeniería | es_CO |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Tesis/Trabajos de Grado [451]