Mostrar el registro sencillo del ítem

dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 Internacionalspa
dc.contributor.advisorCifuentes de la Portilla, Christian Javier
dc.contributor.advisorCruz Jiménez, Juan Carlos 
dc.contributor.authorNieto Salazar, Sebastián
dc.contributor.authorGantiva Díaz, Mónica Rocío
dc.contributor.authorHoyos Agudelo, María Alejandra
dc.date.accessioned2023-02-08T15:18:18Z
dc.date.available2023-02-08T15:18:18Z
dc.date.issued2023-01-18
dc.identifier.urihttp://hdl.handle.net/1992/64806
dc.description.abstractLa deformidad del pie plano adquirido adulto (DPPAA) es caracterizada por el colapso progresivo del arco medial longitudinal del pie. La literatura reciente muestra que las estructuras pasivas estabilizadoras del arco plantar son principalmente el ligamento spring (LS) y la fascia plantar (FP). En estadios tempranos de la DPPAA, los tratamientos se suelen enfocar en refuerzos del tendón tibial posterior, pues en varios escenarios, el LS en estos pacientes está lesionado. Algunos desarrollos actuales, reemplazan el LS con materiales artificiales. Sin embargo, su aplicación es costosa, compleja y limitada por las condiciones del fabricante. Este estudio propone un proceso novedoso de manufactura de una opción para reformzar el trabajo mecánico del LC. El proceso está basado en el método de electrohilado, a partir de policaprolactona (PCL, polímero sintético), gelatina tipo B (polímero natural) y óxido de grafeno (OG, encargado de conferir propiedades mecánicas), injertos para refuerzo de ligamento spring en cuatro materiales: PCL-GT, PCL GT-OG 1.0%, PCL-GT-OG 1.5%, PCL-GT-OG 2.0%. Se utilizó un tratamiento textil de torsionado para conferir mejores propiedades mecánicas al injerto, logrando propiedades mecánicas cercanas a las del LS humano. La caracterización físico-químicas mostró la presencia efectiva de todos los materiales después de la manufatura y tratamientos. Los injertos mostraron ser no hemolíticos, medianamente agregantes y no citotóxicos. El material fue evaluado usando un modelo computacional de pie humano en diferentes condiciones. Teniendo en cuenta las propiedades fisico-químicas de tejido, el injerto PCL-GT-OG 2.0% fue seleccionado para las simulaciones. Los injertos tuvieron una actuación destacada evitando la caída del arco plantar y de soporte pronador del retropié, lo que podría considerarlo como una alternativa para el refuerzo mecánico del arco plantar en estadíos tempranos de la DPPAA.
dc.format.extent11 páginases_CO
dc.format.mimetypeapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de los Andeses_CO
dc.rights.urihttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf*
dc.titleInjerto electrohilado como opción para aumentación en lesiones de ligamento spring
dc.title.alternativeElectrospun graft as a reinforcement option for spring ligament injuries
dc.typeTrabajo de grado - Maestríaes_CO
dc.publisher.programMaestría en Ingeniería Biomédicaes_CO
dc.subject.keywordElectrospinning
dc.subject.keywordBiomechanics
dc.subject.keywordTissue engineering
dc.subject.keywordIngeniería de tejidos
dc.subject.keywordInjertos
dc.subject.keywordSpring ligament
dc.subject.keywordBiomecánica computacional
dc.subject.keywordComputing methods
dc.subject.keywordNanofibras
dc.subject.keywordNanofibres
dc.subject.keywordFinite element method
dc.subject.keywordPolymers
dc.publisher.facultyFacultad de Ingenieríaes_CO
dc.publisher.departmentDepartamento de Ingeniería Biomédicaes_CO
dc.contributor.juryBayod López, Javier
dc.contributor.juryMuñoz Camargo, Carolina
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.description.degreenameMagíster en Ingeniería Biomédicaes_CO
dc.description.degreelevelMaestríaes_CO
dc.contributor.researchgroupGIBes_CO
dc.contributor.researchgroupIBIOMECHes_CO
dc.contributor.researchgroupGINIBes_CO
dc.description.researchareaBiomecánicaes_CO
dc.description.researchareaBiomechanicses_CO
dc.description.researchareaIngeniería de materialeses_CO
dc.description.researchareaIngeniería de tejidoses_CO
dc.description.researchareaIngeniería Biomédicaes_CO
dc.identifier.instnameinstname:Universidad de los Andeses_CO
dc.identifier.reponamereponame:Repositorio Institucional Sénecaes_CO
dc.identifier.repourlrepourl:https://repositorio.uniandes.edu.co/es_CO
dc.relation.referencesD. V. Flores, C. M. Gómez, M. F. Hernando, M. A. Davis, and M. N. Pathria, Adult acquired flatfoot deformity: Anatomy, biomechanics, staging, and imaging findings, RadioGraphics 39, 1437-1460 (2019)es_CO
dc.relation.referencesC. Y. K. Tang, K. H. Ng, and J. Lai, Adult flatfoot, BMJ p. m295 (2020)es_CO
dc.relation.referencesM. M. Abousayed, M. C. Alley, R. Shakked, and A. J. Rosenbaum, Adult-acquired flatfoot deformity, JBJS Rev. 5, e7-e7 (2017).es_CO
dc.relation.referencesJ. D. Orr and J. A. Nunley, Isolated spring ligament failure as a cause of adult-acquired flatfoot deformity, Foot &amp Ankle Int. 34, 818-823 (2013).es_CO
dc.relation.referencesP. F. Balen and C. A. Helms, Association of posterior tibial tendon injury with spring ligament injury, sinus tarsi abnormality, and plantar fasciitis on MR imaging, Am. J. Roentgenol. 176, 1137-1143 (2001)es_CO
dc.relation.referencesM. Tryfonidis, W. Jackson, R. Mansour, P. Cooke, J. Teh, S. Ostlere, and R. Sharp, Acquired adult flat foot due to isolated plantar calcaneonavicular (spring) ligament insufficiency with a normal tibialis posterior tendon, Foot Ankle Surg. 14, 89-95 (2008).es_CO
dc.relation.referencesJ. T. Deland, R. J. de Asla, I.-H. Sung, L. A. Ernberg, and H. G. Potter, Posterior tibial tendon insufficiency: Which ligaments are involved? Foot and Ankle Int. 26, 427-435 (2005).es_CO
dc.relation.referencesB. Steginsky and A. Vora, What to do with the spring ligament, Foot Ankle Clin. 22, 515-527 (2017)es_CO
dc.relation.referencesC. C.-D. la Portilla, C. Pasapula, R. Larrainzar-Garijo, and J. Bayod, Finite element analysis of secondary effect of midfoot fusions on the spring ligament in the management of adult acquired flatfoot, Clin. Biomech. 76, 105018 (2020).es_CO
dc.relation.referencesContents, Foot Ankle Clin. 26, vii-ix (2021)es_CO
dc.relation.referencesC. C.-D. la Portilla, R. Larrainzar-Garijo, and J. Bayod, Analysis of biomechanical stresses caused by hindfoot joint arthrodesis in the treatment of adult acquired flatfoot deformity: A finite element study, Foot Ankle Surg. 26, 412-420 (2020).es_CO
dc.relation.referencesC. C.-D. la Portilla, R. Larrainzar-Garijo, and J. Bayod, Analysis of biomechanical stresses caused by hindfoot joint arthrodesis in the treatment of adult acquired flatfoot deformity: A finite element study, Foot Ankle Surg. 26, 412-420 (2020).es_CO
dc.relation.referencesD. A. Brennan, A. A. Conte, G. Kanski, S. Turkula, X. Hu, M. T. Kleiner, and V. Beachley, Mechanical considerations for electrospun nanofibers in tendon and ligament repair, Adv. Healthc. Mater. 7, 1701277 (2018).es_CO
dc.relation.referencesH. M. Pauly, D. J. Kelly, K. C. Popat, N. A. Trujillo, N. J. Dunne, H. O. McCarthy, and T. L. H. Donahue, Mechanical properties and cellular response of novel electrospun nanofibers for ligament tissue engineering: Effects of orientation and and geometry, J. Mech. Behav. Biomed. Mater. 61, 258-270 (2016).es_CO
dc.relation.referencesE. Saatcioglu, S. Ulag, A. Sahin, B. K. Yilmaz, N. Ekren, A. T. Inan, Y. Palaci, C. B. Ustundag, and O. Gunduz, Design and fabrication of electrospun polycaprolactone/chitosan scaffolds for ligament regenera tion, Eur. Polym. J. 148, 110357 (2021)es_CO
dc.relation.referencesS. Ramakrishna, K. Fujihara, W.-E. Teo, T.-C. Lim, and Z. Ma, An Introduction to Electrospinning and Nanofibers (WORLD SCIENTIFIC,2005).es_CO
dc.relation.referencesD. Olvera, R. Schipani, B. N. Sathy, and D. J. Kelly, Electrospinning of highly porous yet mechanically functional microfibrillar scaffolds at the human scale for ligament and tendon tissue engineering, Biomed. Mater. 14, 035016 (2019).es_CO
dc.relation.referencesA. Kausar, Polymeric nanocomposite via electrospinning: Assessment of morphology, physical properties and applications, J. Plast. Film Sheeting 37, 70-92 (2020).es_CO
dc.relation.referencesC. C.-D. la Portilla, R. Larrainzar-Garijo, and J. Bayod, Biomechanical stress analysis of the main soft tissues associated with the development of adult acquired flatfoot deformity, Clin. Biomech. 61, 163-171 (2019).es_CO
dc.relation.referencesLarrainzar-Garijo, C. C. de la Portilla, B. Gutiérrez-Narvarte, E. Díez Nicolás, and J. Bayod, Efecto de la osteotomía medializante de cal cáneo sobre tejidos blandos de soporte del arco plantar: un estudio computacional, Revista Española de iaOrtopédica y ia 63, 155-163 (2019).es_CO
dc.relation.referencesA. A. Aldana and G. A. Abraham, Current advances in electrospun gelatin-based scaffolds for tissue engineering applications, Int. J. Pharm. 523, 441-453 (2017).es_CO
dc.relation.referencesA. T. Smith, A. M. LaChance, S. Zeng, B. Liu, and L. Sun, Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites, Nano Mater. Sci. 1, 31-47 (2019).es_CO
dc.relation.referencesT. J. Chang, The foot and ankle (Lippincott Williams & Wilkins, 2005).es_CO
dc.relation.referencesD. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, Improved synthesis of graphene oxide, ACS Nano 4, 4806-4814 (2010).es_CO
dc.relation.referencesD. N. Céspedes-Valenzuela, S. Sánchez-Rentería, J. Cifuentes, M. Gantiva-Diaz, J. A. Serna, L. H. Reyes, C. Ostos, C. C.-D. la Portilla, C. Muñoz-Camargo, and J. C. Cruz, Preparation and characterization of an injectable and photo-responsive chitosan methacrylate/graphene oxide hydrogel: Potential applications in bone tissue adhesion and repair, Polymers 14, 126 (2021).es_CO
dc.relation.referencesB. Feng, H. Tu, H. Yuan, H. Peng, and Y. Zhang, Acetic-acid-mediated miscibility toward electrospinning homogeneous composite nanofibers of GT/PCL, Biomacromolecules 13, 3917-3925 (2012).es_CO
dc.relation.referencesC. E. Campiglio, N. C. Negrini, S. Farè, and L. Draghi, Cross-linking strategies for electrospun gelatin scaffolds, Materials 12, 2476 (2019).es_CO
dc.relation.referencesJ. Horakova, M. Klicova, J. Erben, A. Klapstova, V. Novotny, L. Behalek, and J. Chvojka, Impact of various sterilization and disinfection techniques on electrospun polycaprolactone, ACS Omega 5, 8885-8892 (2020).es_CO
dc.relation.referencesI. Standard, Iso 10993-4: Biological evaluation of medical devices part 4-selection of tests for interactions with blood, Int. Organ. for Standardization: Geneva, Switz. (2017)es_CO
dc.relation.referencesF. ASTM, 756-00. standard practice for assessment of hemolytic prop erties of materials, Philadelphia: Am. Soc. for Test. Mater. (2000).es_CO
dc.relation.referencesM. Azizi, M. Azimzadeh, M. Afzali, M. Alafzadeh, and S. H. Mirhosseini, Characterization and optimization of using calendula offlcinalis extract in fabrication of polycaprolactone-gelatin electrospun nanofibers for wound dressing applications, J. Adv. Mater. Process. 6, 34-46 (2018).es_CO
dc.relation.referencesM. Yang, X. Gao, Z. Shen, X. Shi, and Z. Lin, Gelatin-assisted con glutination of aligned polycaprolactone nanofilms into a multilayered fibre-guiding scaffold for periodontal ligament regeneration, RSC Adv. 9, 507-518 (2019).es_CO
dc.relation.referencesSudesh, N. Kumar, S. Das, C. Bernhard, and G. D. Varma, Effect of graphene oxide doping on superconducting properties of bulk MgBsub2/sub, Supercond. Sci. Technol. 26, 095008 (2013).es_CO
dc.relation.referencesD. Ickecan, R. Zan, and S. Nezir, Eco-friendly synthesis and characterization of reduced graphene oxide, J. Physics: Conf. Ser. 902, 012027 (2017).es_CO
dc.relation.referencesF. Rostami, E. Tamjid, and M. Behmanesh, Drug-eluting PCL/graphene oxide nanocomposite scaffolds for enhanced osteogenic differentiation of mesenchymal stem cells, Mater. Sci. Eng. C 115, 111102 (2020).es_CO
dc.relation.referencesR. Longo, M. Catauro, A. Sorrentino, and L. Guadagno, Thermal and mechanical characterization of complex electrospun systems based on polycaprolactone and gelatin, J. Therm. Analysis Calorim. 147, 5391-5399 (2022).es_CO
dc.relation.referencesF. Najafi and M. Rajabi, Thermal gravity analysis for the study of stability of graphene oxide-glycine nanocomposites, Int. Nano Lett. 5, 187-190 (2015)es_CO
dc.relation.referencesK. Ren, Y. Wang, T. Sun, W. Yue, and H. Zhang, Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes, Mater. Sci. Eng. C 78, 324-332 (2017).es_CO
dc.relation.referencesS. Siegler, J. Block, and C. D. Schneck, The mechanical characteristics of the collateral ligaments of the human ankle joint, Foot &amp Ankle 8, 234-242 (1988).es_CO
dc.relation.referencesX. Zhou, S. Fang, X. Leng, Z. Liu, and R. H. Baughman, The power of fiber twist, Accounts Chem. Res. 54, 2624-2636 (2021).es_CO
dc.relation.referencesP. Coimbra, P. Santos, P. Alves, S. P. Miguel, M. P. Carvalho, K. D. de Sá, I. Correia, and P. Ferreira, Coaxial electrospun PCL/gelatin-MA fibers as scaffolds for vascular tissue engineering, Colloids Surfaces B: Biointerfaces 159, 7-15 (2017).es_CO
dc.relation.referencesS. K. Bhatia and A. B. Yetter, Correlation of visual in vitro cytotoxicity ratings of biomaterials with quantitative in vitro cell viability measurements, Cell Biol. Toxicol. 24, 315-319 (2007).es_CO
dc.relation.referencesG. Jull, A. Moore, D. Falla, J. Lewis, C. McCarthy, and M. Sterling, Grieve's modern musculoskeletal physiotherapy (Elsevier Health Sci ences, 2015).es_CO
dc.relation.referencesN. M. Aboamera, A. Mohamed, A. Salama, T. Osman, and A. Khattab, Characterization and mechanical properties of electrospun cellulose acetate/graphene oxide composite nanofibers, Mech. Adv. Mater. Struct. 26, 765-769 (2017)es_CO
dc.relation.referencesC. Gonzalez-Martin, S. Pita-Fernandez, and S. Pertega-Diaz, Quality of life and functionality in patients with flatfoot, Updat. Manag. Foot Ankle Disord. London: Intech Open pp. 73-90 (2018)es_CO
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentTextes_CO
dc.type.redcolhttps://purl.org/redcol/resource_type/TM
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.subject.themesIngenieríaes_CO


Ficheros en el ítem

Nombre: TesisII_SebastianNietoSalazar_ ...

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem