Show simple item record

dc.rights.licenseAl consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.es_CO
dc.contributor.advisorQuijano Silva, Nicanor 
dc.contributor.advisorRakoto-Ravalontsalama, Naly
dc.contributor.advisorLoiseau, Jean Jacques
dc.contributor.advisorOcampo Martínez, Carlos
dc.contributor.advisorGauthier Sellier, Alain 
dc.contributor.authorObando Bravo, Germán Darío
dc.date.accessioned2018-09-27T16:35:49Z
dc.date.available2018-09-27T16:35:49Z
dc.date.issued2015
dc.identifier.urihttp://hdl.handle.net/1992/7669
dc.description.abstractSince the complexity and scale of systems have been growing in the last years, distributed approaches for control and decision making are becoming more prevalent. This dissertation focuses on an important problem involving distributed control and decision making, the dynamic resource allocation in a network. To address this problem, we explore a consensus?based algorithm that does not require any centralized computation, and that is capable to deal with applications modeled either by dynamical systems or by memoryless functions. The main contribution of our research is to prove, by means of graph theoretical tools and passivity analysis, that the proposed controller asymptotically reaches an optimal solution without the need of full information. In order to illustrate the relevance of our main result, we address several engineering applications including: distributed control for energy saving in smart buildings, management of the customers of an aggregating entity in a smart grid environment, and development of an exact distributed optimization method that deals with resource allocation problems subject to lower-bound constraints. Finally, we explore resource allocation techniques based on classic population dynamics models. In order to make them distributed, we introduce the concept of non-well-mixed population dynamics. We show that these dynamics are capable to deal with constrained information structures that are characterized by non-complete graphs. Although the proposed non-well-mixed population dynamics use partial information, they preserve similar properties of their classic counterpart, which uses full information. Specifically, we prove mass conservation and convergence to Nash equilibriumes_CO
dc.formatapplication/pdfes_CO
dc.format.extent131 hojases_CO
dc.language.isoenges_CO
dc.publisherUniandeses_CO
dc.sourceinstname:Universidad de los Andeses_CO
dc.sourcereponame:Repositorio Institucional Sénecaes_CO
dc.titleDistributed methods for resource allocation - a passivity-based approaches_CO
dc.typedoctoralThesises_CO
dc.publisher.programDoctorado en Ingenieríaes_CO
dc.rights.accessRightsopenAccess
dc.subject.keywordControladores programables - Investigacioneses_CO
dc.subject.keywordProcesamiento electrónico de datos - Procesamiento distribuido - Investigacioneses_CO
dc.subject.keywordAsignación de recursos - Investigacioneses_CO
dc.subject.keywordTeoría de los juegos - Investigacioneses_CO
dc.publisher.facultyFacultad de Ingenieríaes_CO
dc.type.versionpublishedVersion
dc.description.degreenameDoctor en Ingenieríaes_CO
dc.description.degreelevelDoctoradoes_CO


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record