Return to the institutional site
    • español
    • English
View Item 
  •   Séneca Home
  • TRABAJOS DE GRADO
  • Doctorado
  • View Item
    • español
    • English
  •   Séneca Home
  • TRABAJOS DE GRADO
  • Doctorado
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of SénecaCommunities and CollectionsFaculties and ProgramsAuthorsTitlesSubjectsTypes of contentsAuthor profilesThis CollectionFaculties and ProgramsAuthorsTitlesSubjectsTypes of contents

My Account

LoginRegister

Statistics

View Usage Statistics

Information of interest

What is SénecaHow publishGuidelinesContact us

O-asymptotic classes of finite structures, pseudofinite dimension and forking

RISMendeley
URI: http://hdl.handle.net/1992/7824
Author: García Rico, Darío Alejandro
Director(s)/Advisor(s): Onshuus Niño, AlfUniandes authority; Scanlon, Thomas; Starchenko, Sergei; Martín-Pizarro, Amador; Berenstein Opscholtens, Alexander JonathanUniandes authority
Publication date: 2014
Content type: doctoralThesis
Keywords:
Teoría de modelos - Investigaciones
Grupos finitos - Investigaciones
Abstract:
Abstract: My research aims to study the of ultraproducts of finite structures and the study of forking, pseudofinite dimensions and other model-theoretic properties, specifically in pseudofinite structures and classes of finite linearly ordered structures. The main results obtained during my Ph.D can be separated in two main topics: Pscudofinitc dimcnsions and forking, and 0-asymptotic classcs of finitc structurcs. Studying classes of finite structures (e.g 1-dimensional asymptotic classcxs) one can ask whether the notions of pseudofinite dimensions of Hrushovski and Wagner provide information about independence relations and other model-theoretic properties in their ultraproducts. In this setting, I proved that an instance of dividing in an ultraproduct of finite structures can be realized as a decrease in the pseudofinite dimension; thus implying, as a corollary, a generalization of a well-known result in 1-dimensional asymptotic classes; namely, that every infinite ultraproduct of models in such a class is supersimple of U-rank 1. In the study of classes of finite linearly ordered structures, I stated the definition of O-asymptotic classcs as a way to meld ideas from 1-dimensional asymptotic classes and 0-minimality. The main examples of these classes are the class of finite linear orders and the class of cyclic grolllxs Z/(2N + I)Z with the natural order inherited by the order in the integers when we take the representative-s - N < - (N-1) < ? <-1<0<1< ? < N ? 1 < N. Results obtained Include: a cell-decomposition result for 0-asymptotic classes melding ideas from the combinatorial cell decomposition for 1-dimensional asymptotic clas.scxs, and the cell decomposition theorem in O-minimal structures; and a classification of the ultraproducts of 0-asymptotic classes: if every ultraproduct of a class C is o-minimal, then C is an O-asymptotic class; every infinite ultraproduct of structures in an 0-asymptotic class is superrosy of U-thorn-rank 1 and NTP2 of inp-rank l. I also present a preliminary collection of results towards isolate conditions under which dense 0-minimal structures can be obtained as quotients of ultraproducts of 0-asymptotic classes
Show full item record

Files in this item

Thumbnail
Name:
u703099.pdf
Size:
926.2Kb
Format:
PDF

Statistics

View Usage Statistics
Donaciones

Los Andes

Donaciones


Icono Repositorio

Los Andes

Repositorio


Icono Egresados

Los Andes

Egresados


Icono Eventos

Los Andes

Eventos



Cra 1 Nº 18A - 12

Bogotá - Colombia

Postal code: 111711

+(571) 339 49 99

+(571) 339 49 49


Normatividad Institucional

  • Actos internos e incremento
  • Bienestar
  • Derechos pecunarios
  • Estatuto docente
  • Estatuto general
  • Ley de transparencia
  • Porcentaje de incremento
  • Reglamentos de estudiantes
  • Uso de datos personales

Enlaces Rápidos

  • ATC (Acceso Temporal al Campus)
  • Universidad de los Andes Caribe
  • Convivencia y transparencia
  • Educación Continuada
  • Emergencias: Extensión 0000
  • Nuestros profesores
  • Mapa del sitio
  • Multimedia
  • Noticias
  • Preguntas frecuentes

Redes sociales

  • Facebook
  • twitter
  • youtube
  • linkedin
  • instagram
  • snapchat
  • vimeo
  • google

Directorio de redes